Advertisement

Assessment of Fundus Images for Retinal Abnormality Screening—A Study

  • J. T. Anita Rose
  • Sangeetha Francelin VinnarasiEmail author
  • Jesline
  • V. RajinikanthEmail author
Conference paper
  • 12 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1119)

Abstract

Screening of eye is essential to identify a range of retinal irregularities, and Fundus Imaging (FI) is one of the techniques commonly used by the ophthalmologist to record and evaluate the retinal abnormalities. Manual appraisal of FI is time-consuming, and hence, a computer-based methodology is always preferred. This work aims to develop a system to examine the retinal abnormality with the help of FI pictures. This work employs a hybrid processing scheme to enhance and extract the FI in order to extract and assess the optic-disc section. In this work, enhancement is done with firefly algorithm and Kapur’s thresholding, and the extraction is implemented with level set technique. All these testing are put into practice with MATLAB software using the benchmark Rim-One FI database, and the results of this study confirmed that the anticipated technique offered enhanced outcome in extracting the disc section from the RGB scaled FI.

Keywords

Fundus images Retinal abnormality Firefly algorithm Optic-disc Validation 

References

  1. 1.
    Dey, N. et al.: Optical cup to disc ratio measurement for glaucoma diagnosis using Harris corner. In: Third International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE (2012).  https://doi.org/10.1109/icccnt.2012.6395971
  2. 2.
    Shree, T.D.V., Revanth, K., Raja, N.S.M., Rajinikanth, V.: A hybrid image processing approach to examine abnormality in retinal optic disc. Procedia Comput. Sci. 125, 157–164 (2018)CrossRefGoogle Scholar
  3. 3.
    Sudhan, G.H.H., Aravind, R.G., Gowri, K., Rajinikanth, V.: Optic disc segmentation based on Otsu’s thresholding and level set. In: International Conference on Computer Communication and Informatics (ICCCI) IEEE, pp. 1–5 (2017).  https://doi.org/10.1109/iccci.2017.8117688
  4. 4.
    Fumero, F., Alayon, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6 (2011)Google Scholar
  5. 5.
  6. 6.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)Google Scholar
  7. 7.
    Raja, N.S.M., et al.: Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J. Med. Imaging Health Inf. 7(8), 1825–1829 (2017).  https://doi.org/10.1166/jmihi.2017.2267CrossRefGoogle Scholar
  8. 8.
    Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recognit. Lett. 94, 87–94 (2016).  https://doi.org/10.1016/j.patrec.2017.05.028
  9. 9.
    Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019).  https://doi.org/10.1109/MCE.2019.2923926CrossRefGoogle Scholar
  10. 10.
    Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K.: Inspection of crop-weed image database using kapur’s entropy and spider monkey optimization. Adv. Intell. Syst. Comput. 1048 (2019).  https://doi.org/10.1007/978-981-15-0035-0_32
  11. 11.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome, UK (2011)Google Scholar
  12. 12.
    Rajinikanth, V., Couceiro, M.S.: Optimal multilevel image threshold selection using a novel objective function. Adv. Intell. Syst. Comput. 340, 177–186 (2015)Google Scholar
  13. 13.
    Manic, K.S., Priya, R.K., Rajinikanth, V.: Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J. Sci. Technol. 9(12), 89949 (2016)Google Scholar
  14. 14.
    Li, C., Xu, C., Gui, C., Fox, M.D: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)Google Scholar
  15. 15.
    Rajinikanth, V., Lin, H., Panneerselvam, J., Raja, N.S.M.: Examination of retinal anatomical structures—a study with spider monkey optimization algorithm. Appl. Nature-Inspired Comput. Algorithms Case Stud. 177–197 (2020).  https://doi.org/10.1007/978-981-13-9263-4_8
  16. 16.
    Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019).  https://doi.org/10.1016/j.artmed.2019.07.006CrossRefGoogle Scholar
  17. 17.
    Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images– a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019).  https://doi.org/10.1007/s10916-019-1428-9CrossRefGoogle Scholar
  18. 18.
    Dey, N., et al.: Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019).  https://doi.org/10.1016/j.bbe.2019.07.005CrossRefGoogle Scholar
  19. 19.
    Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. of Optim. 2018, 12 (2018).  https://doi.org/10.1155/2018/3738049CrossRefzbMATHGoogle Scholar
  20. 20.
    Satapathy, S.C., Raja, N.S.M., Rajinikanth, V., Ashour, A.S., Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. (2016).  https://doi.org/10.1007/s00521-016-2645-5CrossRefGoogle Scholar
  21. 21.
    Chandrakar, P.: A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. Int. J. Ambient Comput. Intell. (IJACI) 10(1), 96–116 (2019).  https://doi.org/10.4018/IJACI.2019010106CrossRefGoogle Scholar
  22. 22.
    Bhattacharya, H., Chattopadhyay, S., Chattopadhyay, M., Banerjee, A.: Storage and bandwidth optimized reliable distributed data allocation algorithm. J. Ambient Comput. Intell. (IJACI) 10(1), 78–95 (2019).  https://doi.org/10.4018/IJACI.2019010105CrossRefGoogle Scholar
  23. 23.
    Rajinikanth, V., Raja, N.S.M., Arunmozhi, S.: ABCD rule implementation for the skin melanoma assesment–a study. In: IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (2019).  https://doi.org/10.1109/icscan.2019.8878860
  24. 24.
    Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (dmd): a data mining (DM) approach. Adv. Intell. Syst. Comput. 710, 539–549 (2018).  https://doi.org/10.1007/978-981-10-7871-2_52CrossRefGoogle Scholar
  25. 25.
    Sahani, R., et al.: Classification of intrusion detection using data mining techniques. Adv. Intell. Syst. Comput. 710, 753–764 (2018).  https://doi.org/10.1007/978-981-10-7871-2_72CrossRefGoogle Scholar
  26. 26.
    Pradhan, C., Das, H., Naik, B., Dey, N.: Handbook of Research on Information Security in Biomedical Signal Processing Hershey. IGI Global, PA (2018)CrossRefGoogle Scholar
  27. 27.
    Sahoo, A.K., Mallik, S., Pradhan, C., Mishra, B.S.P., Barik, R.K., Das, H.: Intelligence-based health recommendation system using big data analytics. In: Big Data Analytics for Intelligent Healthcare Management, pp. 227–246 (2019).  https://doi.org/10.1016/B978-0-12-818146-1.00009-X
  28. 28.
    Dey, N., Das, H., Naik, B., Behera, H.S. (eds.): Big Data Analytics for Intelligent Healthcare Management. Academic (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer Science EngineeringSt. Joseph’s College of EngineeringChennaiIndia
  2. 2.Department of Electronics and InstrumentationSt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations