Molten Salt Conversion of Plastics into Highly Conductive Carbon Nanostructures

  • Ali Reza KamaliEmail author


The pollution caused by the increasing accumulation of plastic wastes in the environment is considered a serious emerging threat to our wildlife, habitats and to us. In fact, the efficient removal of plastic wastes from the environment is challenging in the absence of a strong economic driving force. Such a driving force can be achieved through the low-cost conversion of plastic wastes into highly valuable outputs such as high-quality graphene materials. This chapter provides an introduction into thermokinetic characterization of polyethylene terephthalate, the most commonly used plastic, and then deals with the molten salt—assisted conversion of plastic bottles into graphene nanostructures with a high surface area, degree of crystallinity and electrical conductivity.


Plastic waste Molten salt Carbon nanotubes Graphene Conductivity Pyrolysis 


  1. 1.
    M. Kutz (ed.), Applied Plastics Engineering Handbook, Processing, Materials and Applications, 2nd edn (Elsevier, 2017)Google Scholar
  2. 2.
    K. Chikaoui, M. Izerrouken, M. Djebara, M. Abdesselam, Polyethylene terephthalate degradation under reactor neutron irradiation. Phys. Chem. 130, 431–435 (2017)Google Scholar
  3. 3.
    R.J.L. Escárcega, M.G.S. Anguiano, T. Serrano, J.Y. Chen, I. Gómez, Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull. 76, 4157–4188 (2019)CrossRefGoogle Scholar
  4. 4.
    I.T. Wysocki, P.L. Billon, Plastics at sea: Treaty design for a global solution to marine plastic pollution. Environ. Sci. Policy 100, 94–104 (2019)CrossRefGoogle Scholar
  5. 5.
    R.C. Thompson, C.J. Moore, F.S. vom Saal, S.H. Swan, Plastics, the environment and human health: Current consensus and future trends. Phil. Trans. R. Soc. B 364, 2153–2166 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Cauwenberghe, C.R. Janssen, Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Galloway, C. Lewis, Marine microplastics. Curr. Biol. 27, 431–510 (2017)CrossRefGoogle Scholar
  8. 8.
    B. Kunwar, H.N. Cheng, S.R. Chandrashekaran, B.K. Sharma, Plastics to fuel: A review. Energy Rev. 54, 421–428 (2016)Google Scholar
  9. 9.
    A. Naji, M. Nuri, A. Dick Vethaak, Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018)CrossRefGoogle Scholar
  10. 10.
    R. Geyer, J.R. Jambeck, K. Lavender Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, 1700782 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Ioakeimidis, K.N. Fotopoulou, H.K. Karapanagioti, M. Geraga, C. Zeri, E. Papathanassiou et al., The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Sci. Rep. 6, 23501 (2016)CrossRefGoogle Scholar
  12. 12.
    I. Abo El-Naga, M. Ragab, Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Constr. Build. Mater. 219, 81–90 (2019)CrossRefGoogle Scholar
  13. 13.
    N.S.L. Louzada J.A.C. Malko, M.D.T. Casagrande, D.Sc, Behavior of clayey soil reinforced with polyethylene terephthalate. J. Mater. Civ. Eng. 31, 04019218 (2019)CrossRefGoogle Scholar
  14. 14.
    D.V. Marques, R.L. Barcelos, G.O.C. Parma, E. Girotto, A.C. Júnior, N.C. Pereira, R.F. Magnago, Recycled polyethylene terephthalate and aluminum anodizing sludge-based boards with flame resistance. Waste Manag. 92, 1–14 (2019)CrossRefGoogle Scholar
  15. 15.
    A.B. Raheem, Z. Zainon Noor, A. Hassan, M.K. Abd Hamid, S.A. Samsudin, A.H. Sabeen, Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Cleaner Prod. 225, 1052–1064 (2019)CrossRefGoogle Scholar
  16. 16.
    T. Tomsej, J. Horak, S. Tomsejova, K. Krpec, J. Klanova, M. Dej et al., The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene. Chemosphere 196, 18–24 (2018)CrossRefGoogle Scholar
  17. 17.
    G. Lopez, M. Artetxe, M., Amutio, J. Alvarez, J. Bilbao, M. Olazar, Recent advances in the gasification of waste plastics. A critical overview, Renew. Sustain. Energy Rev. 82, 576–596 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Alvarez, S. Kumagai, C. Wu, T. Yoshioka, J. Bilbao, M. Olazar et al., Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrogen Energy 39, 10883–10891 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Abu El-Rub, E.A. Bramer, G. Brem, Review of catalysts for tar elimination in biomass gasification processes, Ind. Eng. Chem. Res. 43, 6911–6919 (2004)CrossRefGoogle Scholar
  20. 20.
    K.G. Burra, A.K. Gupta, Synergistic effects in steam gasification of combined biomass and plastic waste mixtures. Appl. Energy 211, 230–236 (2018)CrossRefGoogle Scholar
  21. 21.
    R. Koshti, L. Mehta, N. Samarth, Biological recycling of polyethylene terephthalate: A mini-review. J. Polym. Environ. 26, 3520–3529 (2018)CrossRefGoogle Scholar
  22. 22.
    B. Molnar, F. Ronkay, Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull. 76, 2387–2398 (2019)CrossRefGoogle Scholar
  23. 23.
    H. Eliasson, B.E. Mellander, Higher-order mode-coupling theory analysis of dielectric measurements on semi-crystalline PET (poly(ethylene terephthalate)). J. Phys.: Condens. Matter 11, 8807–8817 (1999)Google Scholar
  24. 24.
    A.R. Kamali, J. Yang, Q. Sun, Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity. Appl. Surf. Sci. 476, 539–551 (2019)CrossRefGoogle Scholar
  25. 25.
    E. Gonzalez II, M.D. Barankin, P.C. Guschl, R.F. Hicks, Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate. Langmuir 24, 12636–12643 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Tanaka, Two equilibrium melting temperatures and physical meaning of DSC melting peaks in poly(ethylene terephthalate). Polymer 49, 5353–5356 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Hamidi, Kinetics study of the thermal decomposition of post-consumer poly(ethylene terephthalate) in an argon atmosphere. J. Macromol. Sci. Part B Phys. 58(2), 210–247 (2019)CrossRefGoogle Scholar
  28. 28.
    Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)CrossRefGoogle Scholar
  29. 29.
    P. Ruz, S. Banerjee, M. Pandey, V. Sudarsan, P.U. Sastry, R.J. Kshirsagar, Structural evolution of turbostratic carbon: Implications in H2 storage. Solid State Sci. 62, 105–111 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Ramakrishnan, S. Shanmugam, Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications. J. Power Sources 316, 60–71 (2016)CrossRefGoogle Scholar
  31. 31.
    N. Subramanian, B. Viswanathan, Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Adv. 5, 63000–63011 (2015)CrossRefGoogle Scholar
  32. 32.
    R.Z. Li, J.F. Huang, Z.W. Xu, H. Qi, L.Y. Cao, Y.J. Liu, W.B. Li, J.Y. Li, Controlling the thickness of disordered turbostratic nanodomains in hard carbon with enhanced sodium storage performance. Energy Technol. 6, 1080–1087 (2018)CrossRefGoogle Scholar
  33. 33.
    R. Kumar, T. Bhuvana, A. Sharma, Tire waste derived turbostratic carbon as an electrode for a vanadium redox flow battery. ACS Sustain. Chem. Eng. 6, 8238–8246 (2018)CrossRefGoogle Scholar
  34. 34.
    VZh Shemet, A.P. Pomytkin, V.S. Neshpor, High temperature oxidation behavior of carbon materials in air. Carbon 31, 1–6 (1993)CrossRefGoogle Scholar
  35. 35.
    J.R. Hahn, Kinetic study of graphite oxidation along two lattice directions. Carbon 43, 1506–1511 (2005)CrossRefGoogle Scholar
  36. 36.
    M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45, 2341–2350 (2007)CrossRefGoogle Scholar
  37. 37.
    D.W. McKee, D. Chatterji, The catalytic behavior of alkali metal carbonates and oxides in graphite oxidation reactions. Carbon 13, 381–390 (1975)CrossRefGoogle Scholar
  38. 38.
    A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation of molten salt electrolytically produced carbon nanomaterials. Corros. Sci. 54, 307–313 (2012)Google Scholar
  39. 39.
    A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 64, 90–97 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Gutierrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, J. Martínez-Fernandez, Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. J. Power Sources 278, 18–26 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Chen, L. Dai, Carbon nanomaterials for high performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Araby, Q. Meng, L. Zhang, I. Zaman, P. Majewski, J. Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology 26, 112001 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Jin, G.H. Jun, S. Jeon, S.H. Hong, Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Converg. 3, 8 (2016)CrossRefGoogle Scholar
  46. 46.
    F. Hof, K. Kampioti, K. Huang, C. Jaillet, A. Derré, P. Poulin et al., Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon 111, 142–149 (2017)CrossRefGoogle Scholar
  47. 47.
    M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859 (2008)CrossRefGoogle Scholar
  48. 48.
    N. Nan, J. Wang, FIB-SEM Three-dimensional tomography for characterization of carbon-based materials. Adv. Mater. Sci. Eng. 8680715 (2019)Google Scholar
  49. 49.
    A.S.R. Bati, L. Yu, M. Batmunkh, J.G. Shapter, Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 10, 22087–22139 (2018)CrossRefGoogle Scholar
  50. 50.
    P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energ. Rev. 82, 1393–1414 (2018)CrossRefGoogle Scholar
  51. 51.
    R. Beams, L.G. Canc, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 27, 083002 (2015)Google Scholar
  52. 52.
    W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 20, 1171–1185 (2014)CrossRefGoogle Scholar
  53. 53.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  54. 54.
    A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRefGoogle Scholar
  55. 55.
    H.C. Lee, W.W. Liu, S.P. Chai, A.R. Mohamed, A. Aziz, C.S. Khe et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)CrossRefGoogle Scholar
  56. 56.
    M.S. Dresselhaus, A. Jorio, A.G.S. FilhoI, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil. Trans. R. Soc. A 368, 5355–5377 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Mohandoss, S. Sen Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekkal, Solar mediated reduction of graphene oxide, RSC Adv. 7, 957–963 (2017)CrossRefGoogle Scholar
  58. 58.
    P. Rai, K.P. Singh, Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application. J. Environ. Manag. 207, 249–261 (2018)CrossRefGoogle Scholar
  59. 59.
    J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.J. Pis, J.M. Palacios, Structural changes in polyethylene terepthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt. Sci. Technol. 24, 439–449 (2006)CrossRefGoogle Scholar
  60. 60.
    E. Lorenc-Grabowska, M.A. Diez, G. Gryglewicz, Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interface Sci. 469, 205–212 (2016)CrossRefGoogle Scholar
  61. 61.
    F. Lian, B. Xing, L. Zhu, Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J. Colloid Interface Sci. 360, 725–730 (2011)CrossRefGoogle Scholar
  62. 62.
    I. Fernandez-Morales, M.C. Almazan-Almazan, M. Perez-Mendoza, M. Domingo-García, F.J. Lopez-Garzon, PET as precursor of microporous carbons:preparation and characterization. Micropor. Mesopor. Mater. 80, 107–115 (2005)CrossRefGoogle Scholar
  63. 63.
    A.J. Berkmans, M. Jagannatham, S. Priyanka, P. Haridoss, Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage. 34, 2139–2145 (2014)CrossRefGoogle Scholar
  64. 64.
    C. Wu, M.A. Nahil, N. Miskolczi, J. Huang, P.T. Williams, Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ. Sci. Technol. 48, 819–826 (2014)CrossRefGoogle Scholar
  65. 65.
    M.N.M. Hatta, M.S. Hashim, R. Hussin, S. Aida, Z. Kamdi, A.R. Ainuddin, Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition. J. Phys. Conf. Ser. 914, 012029 (2017)Google Scholar
  66. 66.
    V.G. Pol, Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environ. Sci. Technol. 44, 4753–4759 (2010)CrossRefGoogle Scholar
  67. 67.
    N.A.E. Essawy, S.M. Ali, H.A. Farag, A.H. Konsowa, M. Elnouby, H.A. Hamad, Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicol. Environ. Safety 145, 57–68 (2017)CrossRefGoogle Scholar
  68. 68.
    Z. Hu, X. Xiao, H. Jin, T. Li, M. Chen, Z. Liang, Z. Guo, J. Li, J. Wan, L. Huang, Y. Zhang, G. Feng, J. Zhou, Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 8, 15630 (2017)Google Scholar
  69. 69.
    Z. Li, X. Zhang, J. Hou, K. Zhou, Molten salt synthesis of anisometric Sr3Ti2O7 particles. J. Cryst. Growth 305, 265–270 (2007)CrossRefGoogle Scholar
  70. 70.
    A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)CrossRefGoogle Scholar
  71. 71.
    A.R. Kamali, C. Schwandt, D.J. Fray, Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Mater. Character. 62, 987–994 (2011)CrossRefGoogle Scholar
  72. 72.
    K.S.W. Sing, D.H. Everrtt, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  73. 73.
    H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010)CrossRefGoogle Scholar
  74. 74.
    L. Zou, C. Lan, X. Li, S. Zhang, Y. Qiu, Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fiber. Polym. 16, 2158–2164 (2015)CrossRefGoogle Scholar
  75. 75.
    B. Weng, Y.J. Xu, What if the electrical conductivity of graphene is significantly deteriorated for the graphene–semiconductor composite-based photocatalysis? ACS Appl. Mater. Interfaces. 7, 27948–27958 (2015)CrossRefGoogle Scholar
  76. 76.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future. Mater. Today 18, 252–264 (2015)CrossRefGoogle Scholar
  77. 77.
    A. Rezaei, B. Kamali, A.R. Kamali, Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Measurement 150, 107087 (2020)CrossRefGoogle Scholar
  78. 78.
    F. Sun, J. Gao, X. Liu, X. Pi, Y. Yang, S. Wu, Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl. Surf. Sci. 387, 857–863 (2016)CrossRefGoogle Scholar
  79. 79.
    Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018)CrossRefGoogle Scholar
  80. 80.
    J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23735 (2012)CrossRefGoogle Scholar
  81. 81.
    A.R. Kamali. D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)CrossRefGoogle Scholar
  82. 82.
    A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)CrossRefGoogle Scholar
  83. 83.
    A.R. Kamali, Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. 18, 1952–1964 (2016)CrossRefGoogle Scholar
  84. 84.
    A.R. Kamali, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J. Ind. Eng. Chem. 52, 18–27 (2017)CrossRefGoogle Scholar
  85. 85.
    Z. He, L. Gao X. Wang, B. Zhang, W. Qi, J. Song et al., Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72, 304–311 (2014)CrossRefGoogle Scholar
  86. 86.
    X. Jin, R. He, S. Dai, Electrochemical graphitization: an efficient conversion of amorphous carbons to nanostructured graphites. Chem. Eur. J. 23, 11455–11459 (2017)CrossRefGoogle Scholar
  87. 87.
    P.J.F. Harris, Structure of non-graphitising carbons. Int. Mater. Rev. 42, 206–218 (1997)CrossRefGoogle Scholar
  88. 88.
    K. Jurkiewicz, M. Pawlyta, D. Zygadło, D. Chrobak, S. Duber, R. Wrzalik, A. Ratuszna, A. Burian, Evolution of glassy carbon under heat treatment: Correlation structure–mechanical properties. J. Mater. Sci. 53, 3509–3523 (2018)CrossRefGoogle Scholar
  89. 89.
    D.W. Kim, H.S. Kil, J. Kim, I. Mochida, K. Nakabayashi, C.K. Rhee et al., Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory. Carbon 121, 301–308 (2017)CrossRefGoogle Scholar
  90. 90.
    J. Peng, N. Chen, R. He, Z. Wang, S. Dai, X. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew. Chem. 129, 1777–1781 (2017)CrossRefGoogle Scholar
  91. 91.
    D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3. Int. J. Hydrog. Energy 41, 18699–18705 (2016)CrossRefGoogle Scholar
  92. 92.
    F.G. Emmerich, Evolution with heat treatment of crystallinity in carbons. Carbon 33, 1709–1715 (1995)CrossRefGoogle Scholar
  93. 93.
    B. Xu, H. Wang, Q. Zhu, N. Sun, B. Anasori, L. Hu et al., Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018)CrossRefGoogle Scholar
  94. 94.
    A. Rani, S. Nam, K.A. Oh, M. Park, Electrical conductivity of chemically reduced graphene powders under compression. Carbon Lett. 11, 90–95 (2010)CrossRefGoogle Scholar
  95. 95.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  96. 96.
    V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015)CrossRefGoogle Scholar
  97. 97.
    Y. Zhang, L. Ren, S. Wang, A. Marathe, J. Chaudhuri, G. Li, Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRefGoogle Scholar
  98. 98.
    Y. Zhang, S. Wang, L. Li, K. Zhang, J. Qiu, M. Davis et al., Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization. Mater. Chem. Phys. 135, 1057–1063 (2012)CrossRefGoogle Scholar
  99. 99.
    V. Skákalová, P. Kotrusz, M. Jergel, T. Susi, A. Mittelberger, V. Vretenár et al., Chemical oxidation of graphite: evolution of the structure and properties. J. Phys. Chem. C 122(208), 929–935 (2017)CrossRefGoogle Scholar
  100. 100.
    L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström et al., Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9, 9562–9571 (2017)CrossRefGoogle Scholar
  101. 101.
    J. Zhang, L. Xu, B. Zhou, Y. Zhu, X. Jiang, The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J. Colloid Interface Sci. 513, 279–286 (2018)CrossRefGoogle Scholar
  102. 102.
    A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014)CrossRefGoogle Scholar
  103. 103.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)CrossRefGoogle Scholar
  104. 104.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)CrossRefGoogle Scholar
  105. 105.
    J.W.F. To, Z. Chen, H. Yao, J. He, K. Kim, H.H. Chou et al., Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent. Sci. 1, 68–76 (2015)CrossRefGoogle Scholar
  106. 106.
    G. Ramos-Fernandez, M. Canal-Rodríguez, A. Arenillas, J.A. Menendez, I. Rodríguez-Pastor, I. Martin-Gullon, Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon 126, 456–463 (2018)CrossRefGoogle Scholar
  107. 107.
    M. Canal-Rodríguez, A. Arenillas, N. Rey-Raap, G. Ramos-Fernandez, I. Martín-Gullon, I., Angel Menendez, J. Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors, Carbon 118, 291–298 (2017)CrossRefGoogle Scholar
  108. 108.
    F. Sun, L. Wang, Y. Peng, J. Gao, X. Pi, Z. Qu et al., Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Appl. Surf. Sci. 436, 486–494 (2018)CrossRefGoogle Scholar
  109. 109.
    D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy, Electrical conductivity of conductive carbon blacks: Influence of surface chemistry and topology. Appl. Surf. Sci. 217, 181–193 (2003)CrossRefGoogle Scholar
  110. 110.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  111. 111.
    X. Geng, L. Li, M. Zhang, B. An, X. Zhu, Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell. J. Environ. Sci. 25, 110–117 (2013)CrossRefGoogle Scholar
  112. 112.
    L. Weinstein, R. Dash, Supercapacitor carbons. Mater. Today 16, 356–357 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations