Applications of Carbon Nanostructures Produced in Molten Salts

  • Ali Reza KamaliEmail author


The cathodic exfoliation of graphite in molten salts can be considered as a low-cost and efficient method for the scalable production of carbon nanostructures with various applications including anode materials for Li ion batteries, supercapacitors, ceramic-based composites and adsorbents for removal of organic pollutants. Various nanostructured carbon materials, such as molten salt-produced graphene nanosheets decorated with SnO2 nanocrystals, Sn-filled carbon nanostructures and graphene-wrapped Si nanoparticles can be fabricated for the application as active materials for lithium-ion batteries. As another application, interconnected graphene nanostructures comprising of nanosheets and nanoscrolls were found to exhibit an excellent performance in electrochemical supercapacitor studies. Moreover, slip cast alumina ceramics containing a low amount of molten salt graphene demonstrated higher values of mechanical properties in comparison with that of bare alumina. As another example, 3D graphene nanosheets produced in molten salts exhibit a high dye adsorption performance in a wide range of the solution pH from 2 to 11. The current chapter reviews these applications.


Molten salts Graphene Supercapacitors Li-ion batteries Anode Ceramic composites Water purification 


  1. 1.
    D.J. Fray, A.R. Kamali, Method of producing Graphene, UK Patent GB 2523154Google Scholar
  2. 2.
    A.R. Kamali, D.J. Fray, Large-scale preparation of graphene by high temperature diffusion of hydrogen in graphite. Nanoscale 7, 11310–11320 (2015)CrossRefGoogle Scholar
  3. 3.
    A.R. Kamali, Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. 18, 1952–1964 (2016)CrossRefGoogle Scholar
  4. 4.
    A.R. Kamali, H.K. Kim, K. Kim, R.V. Kumar, D.J. Fray, Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles. J. Mater. Chem. A 5, 19126–19135 (2017)CrossRefGoogle Scholar
  5. 5.
    H.K. Kim, A.R. Kamali, K.C. Roh, K.B. Kim, D.J. Fray, Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 9, 2249–2256 (2016)CrossRefGoogle Scholar
  6. 6.
    A.R. Kamali, J. Feighan, D.J. Fray, Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics. Faraday Discuss. 190, 451–470 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, X. Zhao, H.E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Ca, Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479–3487 (2018)CrossRefGoogle Scholar
  8. 8.
    R.R. Borude, H. Sugiura, K. Ishikawa, T. Tsutsumi, H. Kondo, M. Hori, Facile synthesis of SnO2-graphene composites employing nonthermal plasma and SnO2 nanoparticles-dispersed ethanol. J. Phys. D: Appl. Phys. 52, 175301 (2019)CrossRefGoogle Scholar
  9. 9.
    M. Arnaiz, C. Botas, D. Carriazo, R. Mysyk, F. Mijangos, T. Rojo, J. Ajuria, E. Goikolea, Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochim. Acta 284, 542–550 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, A. Palmieri, J. He, Y. Meng, N. Beauregard, S.L. Suib, W.E. Mustain, Highly conductive In-SnO2/RGO nano-heterpstructures with improved lithium-ion battery performance. Sci. Rep. 6, 25860 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Rezaei, A.R. Kamali, Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 83, 146–161 (2018)CrossRefGoogle Scholar
  12. 12.
    A.R. Kamali, Thermokinetic characterisation of tin (II) chloride. J. Therm. Anal. Calorim. 118, 99–104 (2014)CrossRefGoogle Scholar
  13. 13.
    A.R. Kamali, G. Divitini, C. Ducati, D.J. Fray, Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram. Int. 40, 8533–8538 (2014)CrossRefGoogle Scholar
  14. 14.
    Z.K. He, Q. Suna, K. Xie, P. Lu, Z. Shi, A.R. Kamali, Reactive molten salt synthesis of natural graphite flakes decorated with SnO2 nanorods as high performance, low cost anode material for lithium ion batteries. J. Alloy. Compd. 792, 1213–1222 (2019)CrossRefGoogle Scholar
  15. 15.
    A.R. Kamali, D.J. Fray, Solid phase growth of tin oxide nanostructures. Mater. Sci. Eng., B 177, 819–825 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Zhou, J. Wang, F. Zhang, S. Liu, J. Wang, D. Yin, L. Wang, SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chem. Commun. 51, 3660–3662 (2015)CrossRefGoogle Scholar
  17. 17.
    A.R. Kamali, D.J. Fray, Review on carbon and silicon based materials as anode materials for lithium ion batteries. J. New Mater. Electrochem. Syst. 13, 147–160 (2010)Google Scholar
  18. 18.
    A.R. Kamali, D.J. Fray, Tin-based materials as advanced anode materials for lithium ion batteries: A review. Rev. Adv. Mater. Sci. 27, 14–24 (2011)Google Scholar
  19. 19.
    W.K. Hsu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, W.Z. Li, R. Escudero, J.P. Hare, H.W. Kroto, D.R.M. Walton, Electrolytic formation of carbon-sheathed mixed Sn–Pb nanowires. Chem. Mater. 11, 1747–1751 (1999)CrossRefGoogle Scholar
  20. 20.
    M. Terrones, W.K. Hsu, A. Schilder, H. Terrones, N. Grobert, J.P. Hare et al., Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307–317 (1998)CrossRefGoogle Scholar
  21. 21.
    Q. Xu, C. Schwandt, D.J. Fray, Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides. J. Electroanal. Chem. 562, 15–21 (2004)CrossRefGoogle Scholar
  22. 22.
    R.D. Gupta, C. Schwandt, D.J. Fray, Preparation of tin-filled carbon nanotubes and nanoparticles by molten salt electrolysis. Carbon 70, 142–148 (2014)CrossRefGoogle Scholar
  23. 23.
    A.R. Kamali, D.J. Fray, A possible scalable method for the synthesis of Sn-containing carbon nanostructures. Mater. Today Commun. 2, e38–e48 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Boch, J.C. Niepce, Ceramic Materials: Processses, Properties and Applications (ISTE Ltd, London, UK, 2007)CrossRefGoogle Scholar
  25. 25.
    R.B. Heimann, Classic and Advanced Ceramics: From Fundamentals to Applications. (Wiley-VCH, 2010)Google Scholar
  26. 26.
    M. Øiloa, G.E.D. Quinn, Fracture origins in twenty-two dental alumina crowns, J. Mech. Behav. Biomed. Mater. 53, 93–103 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Usami, M. Komatsu, H. Mizutani, T. Kaneda, Application of alumina ceramic prostheses to the mandible: Report of seven cases. J. Oral Maxillofac. Surg. 46, 507–509 (1966)CrossRefGoogle Scholar
  28. 28.
    J. Chevalie, L. Gremillard, Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Reveron, O. Zaafrani, G. Fantozzi, Microstructure development, hardness, toughness and creep behaviour of pressureless sintered alumina/SiC micro–nanocomposites obtained by slip-casting. J. Eur. Ceram. Soc. 30, 1351–1357 (2010)CrossRefGoogle Scholar
  30. 30.
    J.P. Auerkari, Mechanical and Physical Properties of Engineering Alumina Ceramics. (ulkaisija-Utgivare, Finland, 1996)Google Scholar
  31. 31.
    J. Chevalier, What future for zirconia as a biomaterial? Biomaterials 27, 535–543 (2006)CrossRefGoogle Scholar
  32. 32.
    Y.Q. Wu, Y.F. Zhang, G. Pezzotti, J.K. Guo, Effect of glass additives on the strength and toughness of polycrystalline alumina. J. Eur. Ceram. Soc. 22, 159–164 (2002)CrossRefGoogle Scholar
  33. 33.
    J. Lalande, S. Scheppokat, R. Janssen, N. Claussen, Toughening of alumina/zirconia ceramic composites with silver particles. J. Eur. Ceram. Soc. 22, 2165–2171 (2002)CrossRefGoogle Scholar
  34. 34.
    W.H. Tuan, R.J. Brook, The toughening of alumina with nickel inclusions. J. Eur. Ceram. Soc. 6, 31–37 (1990)CrossRefGoogle Scholar
  35. 35.
    S.W. Kim, S.L. Cockcro, K.A. Khaliland, K. Ogi, Sintering behavior of ultra-fine Al2O3–(ZrO2 + Xmol% Y2O3) ceramics by high-frequency induction heating. Mater. Sci. Eng., A 527, 4926–4931 (2010)CrossRefGoogle Scholar
  36. 36.
    P.A. Trusty, J.A. Yeomans, The toughening of alumina with iron: Effects of iron distribution on fracture toughness. J. Eur. Ceram. Soc. 17, 495–504 (1997)CrossRefGoogle Scholar
  37. 37.
    K. Wang, Y. Wang, Z. Fan, J. Yan, T. Wei, Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46, 315–318 (2011)CrossRefGoogle Scholar
  38. 38.
    H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhy, M.J. Reece, Graphene reinforced alumina nano-composites. Carbon 64, 359–369 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Liu, H. Yan, K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 39, 6215–6221 (2013)CrossRefGoogle Scholar
  40. 40.
    M.M.M. Alyobi, C.J. Barnett, P. Rees, R.J. Cobley, Modifying the electrical properties of graphene by reversible point-ripple formation. Carbon 143, 762–768 (2019)CrossRefGoogle Scholar
  41. 41.
    G.P. Dimitrios, I. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017)CrossRefGoogle Scholar
  42. 42.
    A. Kumar, K. Sharma, A.R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54, 5992–6026 (2019)CrossRefGoogle Scholar
  43. 43.
    H.L. Hou, J.P. Merino, A. Criado, A. Hirsch, M. Prato, The reactivity of reduced graphene depends on solvation. 2D Mater. 6, 025009 (2019)CrossRefGoogle Scholar
  44. 44.
    İ. Duru, D. Ege, A.R. Kamali, Graphene oxides for removal of heavy and precious metals from wastewater. J. Mater. Sci. 51, 6097–6116 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Azadmanjiri, V.K. Srivastava, P. Kumar, M. Nikzad, J. Wang, A. Yu, Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J. Mate. Chem. A 6, 702–734 (2018)CrossRefGoogle Scholar
  46. 46.
    R. Chegel, Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields. Phys. B 531, 206–212 (2018)CrossRefGoogle Scholar
  47. 47.
    M. Zamani, M. Abbasnejad, Optical properties of superconductor-graphene-superconductor junction. Physica C 554, 19–26 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Salem, S. Akir, I. Massoudi, Y. Litaiem, M. Gaidi, K. Khirouni, Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites. J. Alloy. Compd. 767, 982–987 (2018)CrossRefGoogle Scholar
  49. 49.
    F. Moreno-Navarro, M. Sol-Sánchez, F. Gámiz, M.C. Rubio-Gámez, Mechanical and thermal properties of graphene modified asphalt binders. Constr. Build. Mater. 180, 265–274 (2018)CrossRefGoogle Scholar
  50. 50.
    K. Chu, X.-H. Wang, Y.-B. Li, D.-J. Huang, Z.-R. Geng, X.-L. Zhao, H. Liu, H. Zhang, Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018)CrossRefGoogle Scholar
  51. 51.
    X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)CrossRefGoogle Scholar
  52. 52.
    Y. Wu, J. Zhu, L. Huang, A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon 143, 610–640 (2019)CrossRefGoogle Scholar
  53. 53.
    K. Joshi, B. Mazumder, P. Chattopadhyay, N.S. Bora, D. Goyary, S. Karmakar, Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Curr. Drug Deliv. 16, 195–214 (2019)CrossRefGoogle Scholar
  54. 54.
    F. Wang, H. Wang, J. Mao, Aligned-graphene composites: A review. J. Mater. Sci. 54, 36–61 (2019)CrossRefGoogle Scholar
  55. 55.
    H. Fang, S.-L. Bai, C.P. Wong, Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. 112, 216–238 (2018)CrossRefGoogle Scholar
  56. 56.
    X. Chen, S. Zhang, W. Han, Z. Wu, Y. Chen, S. Wang, A review on application of graphene-based microfluidics. J. Chem. Technol. Biotechnol. 93, 3353–3363 (2018)CrossRefGoogle Scholar
  57. 57.
    S. Kim, C.M. Park, M. Jang, A. Son, N. Her, M. Yu, S. Snyder, D.H. Kim, Y. Yoon, Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: A review. Chemosphere 212, 1104–1124 (2018)CrossRefGoogle Scholar
  58. 58.
    J. Park, M. Yan, Covalent functionalization of graphene with reactive intermediates. Accounts Chem. Res. 46, 181–189 (2013)CrossRefGoogle Scholar
  59. 59.
    X. Wang, S.M. Tabakman, H. Dai, Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008)CrossRefGoogle Scholar
  60. 60.
    W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, G. Shi, The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 3, 2248 (2013)CrossRefGoogle Scholar
  61. 61.
    J.J. Yoo et al., Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)CrossRefGoogle Scholar
  62. 62.
    E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B: Environ. 166, 603–643 (2015)CrossRefGoogle Scholar
  63. 63.
    V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent—A review. J. Environ. Manage. 128, 949–963 (2013)CrossRefGoogle Scholar
  64. 64.
    L. Labiadh, M.A. Oturan, M. Panizza, N.B. Hamadi, S. Ammar, Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J. Hazard. Mater. 297, 34–41 (2015)CrossRefGoogle Scholar
  65. 65.
    S. Kuppusamy, K. Venkateswarlu, P. Thavamani, Y.B. Lee, R. Naidu, M. Megharaj, Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecol. Eng. 101, 3–8 (2017)CrossRefGoogle Scholar
  66. 66.
    H. Li, S. Liu, J. Zhao, N. Feng, Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloid. Surface. A 494, 222–227 (2016)CrossRefGoogle Scholar
  67. 67.
    M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209, 201–219 (2018)CrossRefGoogle Scholar
  68. 68.
    A. Rahdar, M. Almasi-Kashi, A.M. Khan, M. Aliahmad, A. Salimi, M. Guettari, H.E.G. Kohne, Effect of ion exchange in NaAOT surfactant on droplet size and location of dye within Rhodamine B (RhB)-containing microemulsion at low dye concentration. J. Mol. Liq. 252, 506–513 (2018)CrossRefGoogle Scholar
  69. 69.
    K. Naseem, Z.H. Farooqi, R. Begum, A. Irfan, Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J. Clean. Prod. 187, 296–307 (2018)CrossRefGoogle Scholar
  70. 70.
    L. Pereira, P. Dias, O.S.G.P. Soares, P.S.F. Ramalho, M.F.R. Pereira, M.M. Alves, Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10. Appl. Catal. B Environ. 212, 175–184 (2017)CrossRefGoogle Scholar
  71. 71.
    H.-M. Xu, X.-F. Sun, S.-Y. Wang, C. Song, S.G. Wang, Development of laccase/graphene oxide membrane for enhanced synthetic dyes separation and degradation. Sep. Purif. Technol. 204, 255–260 (2018)CrossRefGoogle Scholar
  72. 72.
    H.-X. Liu, C. Zhao, N. Wang, L. Shu, J. Zhou, S. Ji, J.-R. Li, Nanosheet α-Co(OH)2 composite membranes with ultrathin separation layer for removing dyes from solvent with high flux. Sep. Purif. Technol. 207, 506–513 (2018)CrossRefGoogle Scholar
  73. 73.
    X. Xie, N. Liu, F. Yang, Q. Zhang, X. Zheng, Y. Wang, J. Liu, Comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation. Ecotox. Environ. Safe 164, 416–424 (2018)CrossRefGoogle Scholar
  74. 74.
    S. Ortiz-Monsalve, P. Valente, E. Poll, V. Jaramillo-García, J.A. Pegas Henriques, M. Gutterres, Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10, Biochem. Eng. J. 141, 19–28 (2019)CrossRefGoogle Scholar
  75. 75.
    X. Qi, L. Wu, T. Su, J. Zhang, W. Dong, Polysaccharide-based cationic hydrogels for dye adsorption. Colloid. Surface. B 170, 364–372 (2018)CrossRefGoogle Scholar
  76. 76.
    J. Xing, X. Wang, J. Xun, J. Peng, Q. Xu, W. Zhang, T. Lou, Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohyd. Polym. 198, 69–75 (2018)CrossRefGoogle Scholar
  77. 77.
    Y. Gao, S.-Q. Deng, X. Jin, S.-L. Cai, S.-R. Zheng, W.-G. Zhang, The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chem. Eng. J. 357, 129–139 (2019)CrossRefGoogle Scholar
  78. 78.
    X. Wang, C. Jiang, B. Hou, Y. Wang, C. Hao, J. Wu, Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 206, 587–596 (2018)CrossRefGoogle Scholar
  79. 79.
    A.A. Siyal, M.R. Shamsuddin, M.I. Khan, N.E. Rabat, M. Zulfiqar, Z. Man, J. Siame, K.A. Azizli, A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manage. 224, 327–339 (2018)CrossRefGoogle Scholar
  80. 80.
    A. Méndez, F. Fernández, G. Gascó, Removal of malachite green using carbon-based adsorbents. Desalination 206, 147–153 (2007)CrossRefGoogle Scholar
  81. 81.
    J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145–1158 (2017)CrossRefGoogle Scholar
  82. 82.
    J. Wang, Q. Zhang, X. Shao, J. Ma, G. Tian, Properties of magnetic carbon nanomaterials and application in removal organic dyes. Chemosphere 207, 377–384 (2018)CrossRefGoogle Scholar
  83. 83.
    S. Jayanthi, N. KrishnaRao Eswar, S.A. Singh, K. Chatterjee, G. Madras, A.K. Sood, Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications, RSC Adv. 6, 1231–1242 (2016)CrossRefGoogle Scholar
  84. 84.
    A. Bhattacharyya, D. Mondal, I. Roy, G. Sarkar, N.R. Saha, D. Rana, T.K. Ghosh, D. Mandal, M. Chakraborty, D. Chattopadhyay, Studies of the kinetics and mechanism of the removal process of proflavine dye through adsorption by graphene oxide. J. Mol. Liq. 230, 696–704 (2017)CrossRefGoogle Scholar
  85. 85.
    Y. Qi, M. Yang, W. Xu, S. He, Y. Men, Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interf. Sci. 486, 84–96 (2017)CrossRefGoogle Scholar
  86. 86.
    J. He, J. Li, W. Du, Q. Han, Z. Wang, M. Li, A mesoporous metal-organic framework: Potential advances in selective dye adsorption. J. Alloy. Compd. 750, 360–367 (2018)CrossRefGoogle Scholar
  87. 87.
    A. Molla, Y. Li, B. Mandal, S.G. Kang, S.H. Hur, J.S. Chung, Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 464, 170–177 (2019)CrossRefGoogle Scholar
  88. 88.
    S.F. Azha, L. Sellaoui, M.S. Shamsudin, S. Ismail, A. Bonilla-Petriciolet, A. Ben Lamine, A. Erto, Synthesis and characterization of a novel amphoteric adsorbent coating for anionic and cationic dyes adsorption: Experimental investigation and statistical physics modelling, Chem. Eng. J. 351, 221–229 (2018)CrossRefGoogle Scholar
  89. 89.
    R.V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: A review. J. Hazard. Mater. 355, 34–49 (2018)CrossRefGoogle Scholar
  90. 90.
    F. Sharif, L.R. Gagnon, S. Mulmi, E.P.L. Roberts, Electrochemical regeneration of a reduced graphene oxide/magnetite composite adsorbent loaded with methylene blue. Water Res. 114, 237–245 (2017)CrossRefGoogle Scholar
  91. 91.
    M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of activated carbon: A comprehensive review. Sep. Purif. Technol. 197, 345–359 (2018)CrossRefGoogle Scholar
  92. 92.
    P.J. Lu, H.C. Lin, W.T. Yu, J.M. Chern, Chemical regeneration of activated carbon used for dye adsorption. J. Taiwan Inst. Chem. E. 42, 305–311 (2011)CrossRefGoogle Scholar
  93. 93.
    J. Jaramillo, P.M. Álvarez, V. Gómez-Serrano, Oxidation of activated carbon by dry and wet methods: Surface chemistry and textural modifications. Fuel Process. Technol. 91, 1768–1775 (2010)CrossRefGoogle Scholar
  94. 94.
    H.-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, Y.H. Lee, Thermal stability of graphite oxide. Chem. Phys. Lett. 470, 255–258 (2009)CrossRefGoogle Scholar
  95. 95.
    F. Kooli, Y. Liu, M. Abboudi, S. Rakass, H.O. Hassani, S.M. Ibrahim, R. Al-Faze, Application of organo-magadiites for the removal of eosin dye from aqueous solutions: Thermal treatment and regeneration. Molecules 23, 2280 (2018)CrossRefGoogle Scholar
  96. 96.
    M. Kumar, H.S. Dosanjh, H. Singh, Magnetic zinc ferrite–alginic biopolymer composite: as an alternative adsorbent for the removal of dyes in single and ternary dye system. J. Inorg. Organomet. 28, 1688–1705 (2018)CrossRefGoogle Scholar
  97. 97.
    M. Miguet, V. Goetz, G. Plantard, Y. Jaeger, Sustainable thermal regeneration of spent activated carbons by solar energy: Application to water treatment. Ind. Eng. Chem. Res. 55, 7003–7011 (2016)CrossRefGoogle Scholar
  98. 98.
    L. Labiadh, A.R. Kamali, 3D graphene nanoedges as efficient dye adsorbents with ultra-high thermal regeneration performance. Appl. Surf. Sci. 490, 383–394 (2019)CrossRefGoogle Scholar
  99. 99.
    C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K.S. Novoselov, D.M. Basko, A.C. Ferrari, Raman spectroscopy of graphene edges. Nano Lett. 9, 1433–1441 (2009)CrossRefGoogle Scholar
  100. 100.
    M.Z. Si, Y.P. Kang, Z.G. Zhang, Surface-enhanced Raman scattering (SERS) spectra of methyl Orange in ag colloids prepared by electrolysis method. Appl. Surf. Sci. 255, 6007–6010 (2009)CrossRefGoogle Scholar
  101. 101.
    M.C. Wu, M.P. Lin, S.W. Chen, P.H. Lee, J.H. Li, W.F. Su, Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection, RSC Adv. 4, 10043 (2014)CrossRefGoogle Scholar
  102. 102.
    A.R. Kamali, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J. Ind. Eng. Chem. 52, 18–27 (2017)CrossRefGoogle Scholar
  103. 103.
    G. Davidson, E.A.V. Ebsworth, Spectroscopic Properties of Inorganic and Organometallic Compounds (RSC, 1988)Google Scholar
  104. 104.
    B. Ledesma, S. Román, A. Álvarez-Murillo, E. Sabio, J.F. González, Cyclic adsorption/thermal regeneration of activated carbons. J. Anal. Appl. Pyrol. 106, 112–117 (2014)CrossRefGoogle Scholar
  105. 105.
    J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol a from aqueous solution by graphene adsorption. Langmuir 28, 8418–8425 (2012)CrossRefGoogle Scholar
  106. 106.
    R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon. Energ. Fuel. 24, 3366–3372 (2010)CrossRefGoogle Scholar
  107. 107.
    Ş.S. Bayazit, Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep. Sci. Technol. 49, 1389–1400 (2014)CrossRefGoogle Scholar
  108. 108.
    E.I. Unuabonah, M.O. Omorogie, N.A. Oladoja, Modeling in Adsorption: Fundamentals and Applications. In: Composite Nanoadsorbents, Micro and Nano Technologies (Elsevier, Amsterdam, The Netherlands, 2019)Google Scholar
  109. 109.
    I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J.Am. Chem. Soc. 38, 2221–2295 (1916)Google Scholar
  110. 110.
    Y. Guesmi, H. Agougui, R. Lafi, M. Jabli, A. Hafiane, Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. J. Mol. Liq. 249, 912–920 (2018)CrossRefGoogle Scholar
  111. 111.
    J. Wang, B. Chen, B. Xing, Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants. Environ. Sci. Technol. 50, 3798–3808 (2016)CrossRefGoogle Scholar
  112. 112.
    G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 126, 385–398 (2017)CrossRefGoogle Scholar
  113. 113.
    Y. Xiao, J.M. Hill, Benefit of hydrophilicity for adsorption of methyl orange and electro-fenton regeneration of activated carbon-polytetrafluoroethylene electrodes. Environ. Sci. Technol. 52, 11760–11768 (2018)Google Scholar
  114. 114.
    Y. Ai, Y. Liu, W. Lan, J. Jin, J. Xing, Y. Zou, C. Zhao, X. Wang, The effect of pH on the U(VI) sorption on graphene oxide (GO): A theoretical study. Chem. Eng. J. 343, 460–466 (2018)CrossRefGoogle Scholar
  115. 115.
    Y.Z. Ma, D. Zheng, Z. Mo, R.J. Dong, X.-Q. Qiu, Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloid. Surface. A 559, 226–234 (2018)CrossRefGoogle Scholar
  116. 116.
    S.C.R. Marques, J.M. Marcuzzo, M.R. Baldan, A.S. Mestre, A.P. Carvalho, Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chem. Eng. J. 321, 233–244 (2017)CrossRefGoogle Scholar
  117. 117.
    C.O. Ania, J.B. Parra, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, Pyrolysis of activated carbons exhausted with organic compounds. J. Anal. Appl. Pyrol. 74, 518–524 (2005)CrossRefGoogle Scholar
  118. 118.
    S. Román, B. Ledesma, A. Álvarez-Murillo, J.F. González, Comparative study on the thermal reactivation of spent adsorbents. Fuel Process. Technol. 116, 358–365 (2013)CrossRefGoogle Scholar
  119. 119.
    I.K. Shah, P. Pre, B.J. Alappat, Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. J. Taiwan Inst. Chem. Eng. 45, 1733–1738 (2014)CrossRefGoogle Scholar
  120. 120.
    Y. Guo, C. Li, S. Lu, C. Zhao, Understanding the deactivation of K2CO3/AC for low-concentration CO2 removal in the presence of trace SO2 and NO2. Chem. Eng. J. 301, 325–333 (2016)CrossRefGoogle Scholar
  121. 121.
    Y. Suzin, L.C. Buettner, C.A. LeDuc, Characterizing the ignition process of activated carbon. Carbon 37, 335–346 (1999)CrossRefGoogle Scholar
  122. 122.
    A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 64, 90–97 (2012)CrossRefGoogle Scholar
  123. 123.
    A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation of electrolytic carbon nanomaterials. Corros. Sci. 54, 307–313 (2012)CrossRefGoogle Scholar
  124. 124.
    R. Das, C.D. Vecitis, A. Schulze, B. Cao, A.F. Ismail, X. Lu, J. Chen, S. Ramakrishna, Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946–7020 (2017)CrossRefGoogle Scholar
  125. 125.
    M. Jahandar Lashaki, J.D. Atkinson, Z. Hashisho, J.H. Phillips, J.E. Anderson, M. Nichols, The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors. J. Hazard. Mater. 315, 42–51 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations