Cathodic Exfoliation of Graphite in Molten Salt Electrolytes

  • Ali Reza KamaliEmail author


Scalable green production of carbon nanomaterials with enhanced physical, chemical and mechanical properties has been an interesting, yet challenging topic. Cathodic exfoliation of graphite in molten salt electrolytes has provided an efficient approach for economic and environmentally sustainable production of high-quality carbon nanostructures, including carbon nanotubes, carbon nanoparticles, graphene and nanoparticles encapsulated in graphitic shells. The structure and morphology of these carbon nanostructures depend on a variety of parameters including the reactor design, the chemical composition of the molten salt, the atmosphere and the characteristics of the carbon raw material as well as the electrochemical parameters such as the voltage and the current density applied. This chapter provides an overview of the key parameters that influence the cathodic exfoliation behavior of graphite in molten salts.


Graphite Molten salts Cathodic exfoliation Graphene Carbon nanotubes Nanoparticles Encapsulation 


  1. 1.
    A. Rezaei, A.R. Kamali, Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 83, 146–161 (2018)CrossRefGoogle Scholar
  2. 2.
    A.R. Kamali, D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)CrossRefGoogle Scholar
  3. 3.
    A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)CrossRefGoogle Scholar
  4. 4.
    A.R. Kamali, D.J. Fray, Large-scale preparation of graphene by high temperature diffusion of hydrogen in graphite. Nanoscale 7, 11310–11320 (2015)CrossRefGoogle Scholar
  5. 5.
    A.R. Kamali, Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. 18, 1952–1964 (2016)CrossRefGoogle Scholar
  6. 6.
    A.R. Kamali C. Schwandt, D. J. Fray, Effect of the graphite electrode material on the characteristics, Mater. Charact. 62, 987–994 (2011)Google Scholar
  7. 7.
    A.R. Kamali, D.J. Fray, Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J. Mater. Sci. 51, 569–576 (2016)CrossRefGoogle Scholar
  8. 8.
    A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corr. Sci. 64, 90–97 (2012)CrossRefGoogle Scholar
  9. 9.
    D.J. Fray, A.R. Kamali, Method of producing Graphene, UK Patent GB 2523154Google Scholar
  10. 10.
    I.A. Novoselova, S.V. Kuleshov, S.V. Volkov, V.N. Bykov, Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim. Acta 211, 343–355 (2016)CrossRefGoogle Scholar
  11. 11.
    J.B. Bai, A. Lhamon, A. Marraud, B. Juffrey, V. Zymla, Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 365, 184–188 (2002)CrossRefGoogle Scholar
  12. 12.
    A.R. Kamali, H.K. Kim, K. Kim, R.V. Kumar, D.J. Fray, Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles. J. Mater. Chem. A 5, 19126–19135 (2017)CrossRefGoogle Scholar
  13. 13.
    H.K. Kim, A.R. Kamali, K.C. Roh, K.B. Kim, D.J. Fray, Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 9, 2249–2256 (2016)CrossRefGoogle Scholar
  14. 14.
    A.R. Kamali, J. Feighan, D.J. Fray, Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics. Faraday Discuss. 190, 451–470 (2016)CrossRefGoogle Scholar
  15. 15.
    G.Z. Chen, X.D. Fan, A. Luget, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrolytic conversion of graphite to carbon nanotubes in fused salts. J. Electroanal. Chem. 446, 1–6 (1998)CrossRefGoogle Scholar
  16. 16.
    G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp. Mater. Process. 2, 459–469 (1998)CrossRefGoogle Scholar
  17. 17.
    I.A. Kinloch, G.Z. Chen, J. Howes, C. Boothroyd, C. Singh, D.J. Fray, A.H. Windle, Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)CrossRefGoogle Scholar
  18. 18.
    G. Kaptay, I. Sytchev, J. Miklósi, P. Nagy, P. Póczik, K. Papp, E. Kálmán, Electrochemical synthesis of carbon nanotubes and microtubes from molten salts, in Progress in Molten Salt Chemistry, vol. 1, ed. by R.W. Berg, H.A. Hjuler (Elsevier, Amsterdam, 2000), pp. 257–262Google Scholar
  19. 19.
    J. Miklósi, P. Póczik, I. Sytchev, K. Papp, G. Kaptay, P. Nagy, E. Kálmán, Atomic force microscopy investigation of electrochemically produced carbon nanotubes. Appl. Phys. A 72, 89–92 (2001)CrossRefGoogle Scholar
  20. 20.
    A.T. Dimitrov, G.Z. Chen, I.A. Kinloch, D.J. Fray, A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts. Electrochim. Acta 48, 91–102 (2002)CrossRefGoogle Scholar
  21. 21.
    Q. Xu, C. Schwandt, G.Z. Chen, D.J. Fray, Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. J. Electroanal. Chem. 530, 16–22 (2002)CrossRefGoogle Scholar
  22. 22.
    C. Schwandt, A.T. Dimitrov, D.J. Fray, The preparation of nanostructured carbon materials by electrolysis of molten, lithium chloride at graphite electrodes. J. Electroanal. Chem. 647, 150–158 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Schwandt, A.T. Dimitrov, D.J. Fray, High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis. Carbon 50, 1311–1315 (2012)CrossRefGoogle Scholar
  24. 24.
    R.D. Gupta, The electrochemical production of tin filled carbon nanotubes and their use as anode materials in lithium-ion batteries. Ph.D. thesis, University of Cambridge, Department of Materials Science and Metallurgy, 2008Google Scholar
  25. 25.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  26. 26.
    A.R. Kamali, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J. Ind. Eng. Chem. 52, 18–27 (2017)CrossRefGoogle Scholar
  27. 27.
    A.D. Kirshenbaum, J.A. Cahill, P.J. Mcgonigal, A.V. Grosse, The Density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides. J. Inorg. Nucl. Chem. 24, 1287–1296 (1962)CrossRefGoogle Scholar
  28. 28.
    S.H. Cho, J.M. Hur, C.S. Seo, J.S. Yoon, S.W. Park, Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidizing atmosphere. J. Alloys Compd. 468, 263–269 (2009)CrossRefGoogle Scholar
  29. 29.
    G.S. Solano, J.P. Calderon, J.G.G. Rodriguez, V.M.S. Bravo, J.A.A. Gutierrez, L.M. Gomez, High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts. Adv. Mater. Sci. Eng. 2014, 696081 (2014)Google Scholar
  30. 30.
    N.S. Patel, V. Pavlík, M. Boča, High-temperature corrosion behavior of superalloys in molten salts—a review. Crit. Rev. Solid State Mater. Sci. 42, 83–97 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Hu, Y. Song, J. Ge, J. Zhu, S. Jiao, Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts. J. Mater. Chem. A 3, 21211–21218 (2015)CrossRefGoogle Scholar
  32. 32.
    W.K. Hsu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, W.Z. Li, R. Escudero, J.P. Hare, H.W. Kroto, D.R.M. Walton, Electrolytic formation of carbon-sheathed mixed Sn–Pb nanowires. Chem. Mater. 11, 1747–1751 (1999)CrossRefGoogle Scholar
  33. 33.
    M. Terrones, W.K. Hsu, A. Schilder, H. Terrones, N. Grobert, J.P. Hare et al., Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307–317 (1998)CrossRefGoogle Scholar
  34. 34.
    Q. Xu, C. Schwandt, D.J. Fray, Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides. J. Electroanal. Chem. 562, 15–21 (2004)CrossRefGoogle Scholar
  35. 35.
    R.D. Gupta, C. Schwandt, D.J. Fray, Preparation of tin-filled carbon nanotubes and nanoparticles by molten salt electrolysis. Carbon 70, 142–148 (2014)CrossRefGoogle Scholar
  36. 36.
    A.R. Kamali, D.J. Fray, A possible scalable method for the synthesis of Sn-containing carbon nanostructures. Mater. Today Commun. 2, 38–48 (2015)CrossRefGoogle Scholar
  37. 37.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, I. Khatri, N. Kishi, S.M. Mominuzzaman, T. Soga, T. Jimbo, Low substrate temperature synthesis of carbon nanowalls by ultrasonic spray pyrolysis. Thin Solid Films 519, 4162–4165 (2011)CrossRefGoogle Scholar
  39. 39.
    S.R. Plant, L. Cao, F. Yin, Z.W. Wang, R.E. Palmer, Size-dependent propagation of Au nanoclusters through few-layer graphene. Nanoscale 6, 1258–1263 (2014)CrossRefGoogle Scholar
  40. 40.
    S.-H. Park, S.-B. Yoon, H.-K. Kim, J.T. Han, H.-W. Park, J. Han, S.-M. Yun, H.-K. Chung, K.C. Roh, K.-B. Kim, Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors. Sci. Rep. 4, 6118 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Chen, J. Wen, C. Yan, L. Rice, H. Sohn, M. Shen, M. Cai, B. Dunn, Y. Lu, High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles. Adv. Energy Mater. 1, 551–556 (2011)CrossRefGoogle Scholar
  42. 42.
    D. Bhattacharjya, M.-S. Kim, T.-S. Bae, J.-S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013)CrossRefGoogle Scholar
  43. 43.
    A.R. Kamali, Nanocatalytic conversion of CO2 into nanodiamonds. Carbon 123, 205–215 (2017)CrossRefGoogle Scholar
  44. 44.
    Y. Lu, Y. Liu, C. Zhou, G. Luo, Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor. Ind. Eng. Chem. Res. 53, 11015–11020 (2014)CrossRefGoogle Scholar
  45. 45.
    L. Rojo, I.C. Hurtado, M.C. Morant-Minana, G.G. Mandayo, E. Castano, Enhanced features of Li2CO3 sputtered thin films induced by thickness and annealing time. CrystEngComm 17, 1597–1602 (2015)CrossRefGoogle Scholar
  46. 46.
    P.W. Jaschin, K.B. Varma, Rapid and facile one-step synthesis of LiTaO3 nanorods. CrystEngComm 17, 4642–4646 (2015)CrossRefGoogle Scholar
  47. 47.
    C. Yerlikaya, N. Ullah, A.R. Kamali, R.V. Kumar, Size-controllable synthesis of lithium niobate nanocrystals using modified Pechini polymeric precursor method. J. Therm. Anal. Calorim. 125, 17–22 (2016)CrossRefGoogle Scholar
  48. 48.
    W. Liu, J. Zhang, Q. Wang, X. Xie, Y. Lou, B. Xia, The effects of Li2CO3 particle size on the properties of lithium titanate as anode material for lithium-ion batteries. Ionics 20, 1553–1560 (2014)CrossRefGoogle Scholar
  49. 49.
    B. Akinwolemiwa, L. Yu, D. Hu, X. Jin, J.M. Slattery, G.Z. Chen, Highlights from liquid salts for energy and materials—Faraday Discussion, Ningbo, China, 11–13 May 2016. Chem. Commun. 52, 12538–12554 (2016)CrossRefGoogle Scholar
  50. 50.
    K. Otake, H. Kinoshita, T. Kikuchi, R.O. Suzuki, CO2 gas decomposition to carbon by electro-reduction in molten salts. Electrochim. Acta 100, 293–299 (2013)CrossRefGoogle Scholar
  51. 51.
    L. Li, Z. Shi, B. Gao, X. Hu, Z. Wang, Electrochemical conversion of CO2 to carbon and oxygen in LiCl–Li2O melts. Electrochim. Acta 190, 655–658 (2016)CrossRefGoogle Scholar
  52. 52.
    T. Wakamatsu, T. Uchiyama, S. Natsui, T. Kikuchi, R.O. Suzuki, Solubility of gaseous carbon dioxide in molten LiCl–Li2O. Fluid Phase Equilibr. 15, 48–53 (2015)CrossRefGoogle Scholar
  53. 53.
    C.P. Herrero, R. Ramirez, Diffusion of hydrogen in graphite: A molecular dynamics simulation. J. Phys. D Appl. Phys. 43, 255402 (2010)CrossRefGoogle Scholar
  54. 54.
    H. Zhang, X. Sun, X. Huang, L. Zhou, Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale 7, 3270–3275 (2015)CrossRefGoogle Scholar
  55. 55.
    H. Fei, Z. Peng, Y. Yang, L. Li, A.R.O. Raji, E.L.G. Samuel, J.M. Tour, LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chem. Commun. 50, 7117–7119 (2014)CrossRefGoogle Scholar
  56. 56.
    J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012)CrossRefGoogle Scholar
  57. 57.
    S. Dyjak, M. Cudziło, B. Polański, J. Budner, Bystrzycki Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium. Mater. Charact. 81, 97–104 (2013)CrossRefGoogle Scholar
  58. 58.
    Y. Zhou, R. Ma, P. Li, Y. Chen, Q. Liu, G. Cao, J. Wang, Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A 4, 8204–8210 (2016)CrossRefGoogle Scholar
  59. 59.
    R.S. Subramoney, D.C. Ruoff, B. Lorents, R. Chan, M.J.D. Malhotra, Parvin, Magnetic separation of GdC2 encapsulated in carbon nanoparticles. Carbon 32, 507–513 (1994)CrossRefGoogle Scholar
  60. 60.
    X. Bin, J. Chen, H. Cao, L. Chen, J. Yuan, Preparation of graphene encapsulated copper nanoparticles from CuCl2–GIC. J. Phys. Chem. Solids 70, 1–7 (2009)CrossRefGoogle Scholar
  61. 61.
    Y. Zhang, Y. Xu, J. Zhu, L. Li, X. Du, X. Sun, Electrochemically exfoliated highyield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon 127, 392–403 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations