Advertisement

Production of Advanced Materials in Molten Salts

  • Ali Reza KamaliEmail author
Chapter

Abstract

Molten salt-based methods have been prime candidates for the commercial extraction of a variety of metals, such as aluminum and lithium, which are impossible or very difficult to be produced by other techniques. In addition to these well-developed technologies, molten salt methods have also created new strategies for the preparation of advanced metallic, intermetallic and ceramic materials as well as carbon nanostructures. This chapter focuses on the latter. In contact with carbonaceous materials, molten salts can either be relatively inert or reactive. Both behaviors have been employed for the preparation of carbon nanomaterials. An inert molten salt system can provide a uniform ionically conductive heating medium for the occurrence of reactions with an enhanced reactivity, leading to a significant promotion of reaction kinetics. This promoting influence is mainly due to the enhanced values of the diffusion coefficient of ions in molten salts. In contrast, there are some molten salt methods in which the molten salt involved is reactive against solid or gaseous carbonaceous species, leading to the preparation of a variety of different carbon nanostructures. Molten salt reduction of graphene oxides and the electrochemical exfoliation of graphite are also discussed.

Keywords

Molten salts Advanced materials Reactivity Carbon nanostructures Graphitization CO2 capture 

References

  1. 1.
    H. Alamdari, Aluminum production process: Challenges and opportunities. Metals 7, 133 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks. Appl. Energ. 110, 252–266 (2013)CrossRefGoogle Scholar
  3. 3.
    G.J. Kipouros, D.R. Sadoway, Toward new technologies for the production of lithium. JOM 50, 24–33 (1998)Google Scholar
  4. 4.
    G. Demirci, I. Karakaya, Collection of magnesium in an Mg–Pb alloy cathode placed at the bottom of the cell in MgCl2 electrolysis. J. Alloys Compd. 439, 237–242 (2007)CrossRefGoogle Scholar
  5. 5.
    F.C. Frary, H.R. Bicknell, C.A. Tronson, Efficiency in the electrolytic production of metallic calcium. Ind. Eng. Chem. 2, 522–524 (1910)CrossRefGoogle Scholar
  6. 6.
    G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000)CrossRefGoogle Scholar
  7. 7.
    D.S.M. Vishnu, N. Sanil, K.S. Mohandas, K. Nagarajan, Factors influencing the direct electrochemical reduction of Nb2O5 pellets to Nb metal in molten chloride salts. Acta Metall. Sin. 30, 218–227 (2016)CrossRefGoogle Scholar
  8. 8.
    X. Ge, S. Jin, M. Zhang, X. Wang, S. Seetharaman, Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method. J. Min. Metall. B 51, 185–191 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Abdulaziz, L.D. Brown, D. Inman, S. Simons, P.R. Shearing, D.J.L. Brett, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl–KCl eutectic. Electrochem. Commun. 41, 44–46 (2014)CrossRefGoogle Scholar
  10. 10.
    L.D. Brown, R. Abdulaziz, R. Jervis, V. Bharath, T.J. Mason, R.C. Atwood, C. Reinhard, L.D. Connor, D. Inman, D.J.L. Brett, P.R. Shearing, A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation. J. Synchrotron Rad. 24, 439–444 (2017)CrossRefGoogle Scholar
  11. 11.
    D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3. Int. J. Hydrogen Energy 41, 18699–18705 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Xie, A.R. Kamali, Electro-reduction of hematite using water as the redox mediator. Green Chem. Green Chem. 21, 198–204 (2019)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, H. Jiao, M. Wang, S. Jiao, Direct preparation of V–Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode. J. Alloy. Compd. 779, 22–29 (2019)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, S. Lu, L. Hu, C. Li, Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge Process in molten CaCl2. J. Energy Chem. 22, 819–825 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Li, X. Zou, K. Zheng, X. Ua, Q. Xu, C. Chen, Z. Zhou, Direct production of TiAl3 from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process. J. Alloys Compd. 727, 1243–1252 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Liu, Y. Cai, Q. Xu, Q. Song, H. Liu, A novel preparation of Zr–Si intermetallics by electrochemical reduction of ZrSiO4 in molten salts. New J. Chem. 39, 9969–9975 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Liu, Y. Cai, Q. Xu, H. Liu, Q. Song, Y. Qi, In situ nano-sized ZrC/ZrSi composite powder fabricated by a one-pot electrochemical process in molten salts. RSC Adv. 7, 2301–2307 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Anik, N.B. Hatirnaz, A.B. Aybar, Molten salt synthesis of La(Ni1–xCox)5 (x = 0, 0.1, 0.2, 0.3) type hydrogen storage alloys, Int. J. Hydrogen Energy 41, 361–368 (2016)Google Scholar
  19. 19.
    A.R. Kamali, G. Divitini, C. Ducati, D.J. Fray, Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram. Int. 40, 8533–8538 (2014)CrossRefGoogle Scholar
  20. 20.
    A.R. Kamali, D.J. Fray, Solid phase growth of tin oxide nanostructures. Mater. Sci. Eng., B 177, 819–825 (2012)CrossRefGoogle Scholar
  21. 21.
    A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)CrossRefGoogle Scholar
  22. 22.
    A.M. Abdelkader, Molten salts electrochemical synthesis of Cr2AlC. J. Eur. Ceram. Soc. 36, 33–42 (2016)CrossRefGoogle Scholar
  23. 23.
    Z.W. Cui, X.K. Li, Y. Cong, Z.J. Dong, G.M. Yuan, J. Zhang, Synthesis of tantalum carbide from multiwall carbon nanotubes in a molten salt medium. New Carbon Mater. 32, 205–212 (2017)CrossRefGoogle Scholar
  24. 24.
    Z. Yu, X. Wang, Y.N. Hou, X. Pan, Z. Zhao, J. Qiu, Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon 117, 376–382 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Li, A. Westwood, A. Brown, R. Brydson, B. Rand, A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media. Carbon 47, 201–208 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Zheng, X. Cao, X. Li, J. Tian, C. Jin, R. Yang, Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 9, 1059–1067 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Nita. M. Bensafia, C.L. Vaulot, L. Delmotte, C.M. Ghimbeu, Insights on the synthesis mechanism of green phenolic resin derived porous carbons via a salt-soft templating approach, Carbon 109, 227–238 (2016)CrossRefGoogle Scholar
  28. 28.
    W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5414–5420 (2015)CrossRefGoogle Scholar
  29. 29.
    G.J. Janz, Molten Salts Handbook, 1st edn, (Academic Press, 1967)Google Scholar
  30. 30.
    A.R. Kamali, D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Sure, A.R. Shankar, S. Ramya, C. Mallika, U.K. Mudali, Corrosion behaviour of carbon materials exposed to molten lithium chloride–potassium chloride salt. Carbon 67, 643–655 (2014)CrossRefGoogle Scholar
  32. 32.
    Z. He, L. Gao, X. Wang, B. Zhang, W. Qi, J. Song et al., Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72, 304–311 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Mao, Z. Yan, T. Sheng, M. Gao, H. Zhu, W. Xiao, D. Wang, Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts. Carbon 111, 162–172 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Liu, M. Antonietti, Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69, 460–466 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Zang, Temperature tuned carbon morphologies derived from flexible graphite sheets in KNO3 molten salt. Carbon 98, 221–224 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Honda, K. Egi, S. Toyoda, Y. Sanada, T. Furuta, Electronic properties of heat treated coals. Carbon 1, 155–164 (1964)CrossRefGoogle Scholar
  37. 37.
    D. Gonzalez, M.A. Montes-Moran, R.J. Young, A.B. Garcia, Effect of temperature on the graphitization process of a semianthracite. Fuel Process. Technol. 79, 245–250 (2002)CrossRefGoogle Scholar
  38. 38.
    X. Li, G. Yuan, A. Brown, A. Westwood, R. Brydson, B. Rand, The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon 44, 1699–1705 (2006)CrossRefGoogle Scholar
  39. 39.
    H.V. Ijije, R.C. Lawrence, G.Z. Chen, Carbon electrodeposition in molten salts: Electrode reactions and applications. RSC Adv. 4, 35808 (2014)CrossRefGoogle Scholar
  40. 40.
    C.K. Byun, S.J. Kwon, H.B. Im, H.S. Ahn, H.J. Ryu, K.B. Yi, Novel method for investigation of a K-Mg-based CO2 sorbent for sorption-enhanced water–gas shift reaction. Renew. Energy 87, 415–421 (2016)CrossRefGoogle Scholar
  41. 41.
    C.H. Lee, S. Mun, K.B. Lee, Characteristics of Na–Mg double salt for high-temperature CO2 sorption. Chem. Eng. J. 258, 367–373 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, S. Licht, One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts. Carbon 106, 208–217 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Liu, C. Vogt, A.L. Chaffee, S.L.Y. Chang, Nanoscale Structural Investigation of Cs2CO3-Doped MgO Sorbent for CO2 capture at moderate temperature. J. Phys. Chem. C 117, 17514–17520 (2013)CrossRefGoogle Scholar
  44. 44.
    H.S. Nygårda, V. Tomkuteb, E. Olsena, Kinetics of CO2 absorption by calcium looping in molten halide salts. Energ. Procedia 114, 250–258 (2017)CrossRefGoogle Scholar
  45. 45.
    I.A. Novoselova, S.V. Kuleshov, S.V. Volkov, V.N. Bykov, Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim. Acta 211, 343–355 (2016)CrossRefGoogle Scholar
  46. 46.
    L. Hu, Y. Song, J. Ge, J. Zhu, Z. Han, S. Jiao, Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts. J. Mater. Chem. A 5, 6219–6225 (2017)CrossRefGoogle Scholar
  47. 47.
    L. Hu, Y. Song, J. Ge, J. Zhu, S. Jiao, Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts. J. Mater. Chem. A 3, 21211–21218 (2015)CrossRefGoogle Scholar
  48. 48.
    A.R. Kamali, Nanocatalytic conversion of CO2 into nanodiamonds. Carbon 123, 205–215 (2017)CrossRefGoogle Scholar
  49. 49.
    W. Weng, L. Tang, W. Xiao, Capture and electro-splitting of CO2 in molten salts. J. Energy Chem. 28, 128–143 (2019)CrossRefGoogle Scholar
  50. 50.
    M.B. Jensen, L.G.M. Pettersson, O. Swang, U. Olsbye, CO2 sorption on MgO and CaO surfaces: A comparative quantum chemical cluster study. J. Phys. Chem. B 109, 16774–16781 (2005)CrossRefGoogle Scholar
  51. 51.
    D. Cornu, H. Guesmi, J.M. Krafft, H.L. Pernot, Lewis Acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J. Phys. Chem. C 116, 6645–6654 (2012)CrossRefGoogle Scholar
  52. 52.
    S. Kumar, S.K. Saxena, A comparative study of CO2 sorption properties for different oxides. Mater. Renew. Sustain. Energy 30, 1–15 (2014)CrossRefGoogle Scholar
  53. 53.
    G.B. Elvira, G.C. Francisco, S.M. Víctor, M.L.R. Alberto, MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance. J. Environ. Sci. 57, 418–428 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Qiao, J. Wang, Y. Zhang, W. Gao, T. Harada, L. Huang, T.A. Hatton, Q. Wang, Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: Optimization of the Li/Na/K ratio. Ind. Eng. Chem. Res. 56, 1509–1517 (2017)CrossRefGoogle Scholar
  55. 55.
    A.T. Vu, Y. Park, P.R. Jeon, C.H. Lee, Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures. Chem. Eng. J. 258, 254–264 (2014)CrossRefGoogle Scholar
  56. 56.
    W. Gao, T. Zhou, Y. Gao, B. Louis, D. O’Harec, Q. Wang, Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review. J. Energy Chem. 26, 830–838 (2017)CrossRefGoogle Scholar
  57. 57.
    J.H. Kang, T. Kim, J. Choi, J. Park, Y.S. Kim, M.S. Chang, H. Jung, K.T. Park, S.J. Yang, C.R. Park, Hidden second oxidation step of hummers method. Chem. Mater. 28, 756–764 (2016)CrossRefGoogle Scholar
  58. 58.
    A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8, 3060–3068 (2014)CrossRefGoogle Scholar
  59. 59.
    G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009)CrossRefGoogle Scholar
  60. 60.
    M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nature Rev. 1(1), 1–14 (2016)Google Scholar
  61. 61.
    G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015)CrossRefGoogle Scholar
  62. 62.
    M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: A review. Mater. Res. Bull. 59, 323–328 (2014)CrossRefGoogle Scholar
  63. 63.
    C.K. Chua, Martin Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)CrossRefGoogle Scholar
  64. 64.
    X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010)CrossRefGoogle Scholar
  65. 65.
    M. Ghorbani, H. Abdizadeh, M.R. Golobostanfard, Reduction of graphene oxide via modified hydrothermal method. Procedia Mater. Sci. 11, 326–330 (2015)CrossRefGoogle Scholar
  66. 66.
    K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRefGoogle Scholar
  67. 67.
    Songfeng Pei, Hui-Ming Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRefGoogle Scholar
  68. 68.
    H.C. Schniwpp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prudhomme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)CrossRefGoogle Scholar
  69. 69.
    A.M. Abdelkader, C. Valles, A.J. Cooper, I.A. Kinloch, R.A.W. Dryfe, Alkali reduction of graphene oxide in molten halide salts: Production of corrugated graphene derivatives for high-performance supercapacitors. ACSNano 8, 11225–11233 (2014)Google Scholar
  70. 70.
    J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang, L. Shen, H. Dou, X. Zhang, A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016)CrossRefGoogle Scholar
  71. 71.
    P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20, 329–338 (2015)CrossRefGoogle Scholar
  72. 72.
    J.M. Munuera, J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon 115, 625–628 (2017)CrossRefGoogle Scholar
  73. 73.
    L. Hu, X. Peng, Y. Li, L. Wang, K. Huo, L.Y.S. Lee, K.Y. Wong, P.K. Chu, Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34, 515–523 (2017)CrossRefGoogle Scholar
  74. 74.
    A.T. Najafabadi, E. Gyenge, High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)–acetonitrile electrolyte with low IL content. Carbon 71, 58–69 (2014)CrossRefGoogle Scholar
  75. 75.
    Y. Zhang, Y. Xu, J. Zhu, L. Li, X. Du, X. Sun, Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon 127, 392–403 (2018)CrossRefGoogle Scholar
  76. 76.
    C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussai, Electrochemical approaches to the production of graphene flakes and their potential applications, Carbon 54, 1–21 (2013)CrossRefGoogle Scholar
  77. 77.
    H. Lei, J. Tu, Z. Yu, S. Jiao, Exfoliation mechanism of graphite cathode in ionic liquids. ACS Appl. Mater. Interfaces. 9, 36702–36707 (2017)CrossRefGoogle Scholar
  78. 78.
    W. Wu, C. Zhang, S. Hou, Electrochemical exfoliation of graphene and graphene analogous 2D nanosheets. J. Mater. Sci. 52, 10649–10660 (2017)CrossRefGoogle Scholar
  79. 79.
    A.R. Kamali C. Schwandt, D.J. Fray, Effect of the graphite electrode material on the characteristics, Mater. Charact. 62, 987–994 (2011)Google Scholar
  80. 80.
    A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)CrossRefGoogle Scholar
  81. 81.
    A. Rezaei, A.R. Kamali, Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 83, 146–161 (2018)CrossRefGoogle Scholar
  82. 82.
    A.R. Kamali, D.J. Fray, Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J. Mater. Sci. 51, 569–576 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations