Advertisement

Plant Alkaloids: Structures and Bioactive Properties

  • Erick Paul Gutiérrez-Grijalva
  • Leticia Xochitl López-Martínez
  • Laura Aracely Contreras-Angulo
  • Cristina Alicia Elizalde-Romero
  • José Basilio HerediaEmail author
Chapter

Abstract

Alkaloids are nitrogen-containing natural products found in bacteria, fungi, animals, and plants with complex and diverse structures. The widespread distribution of alkaloids along with their wide array of structures makes their classification often difficult. However, for their study, alkaloids can be classified depending on their chemical structure, biochemical origin, and/or natural origin. Alkaloids can be derived from several biosynthetic pathways, such as the shikimate pathway; the ornithine, lysine, and nicotinic acid pathway; the histidine and purine pathway; and the terpenoid and polyketide pathway. Traditionally, plant alkaloids have played a pivotal role in folk medicines since ancient times as purgatives, antitussives, sedatives, and treatments for a wide variety of ailments. Currently, several alkaloids have served as models for modern drugs, and there are several alkaloids used in pharmacology, such as codeine, brucine, morphine, ephedrine, and quinine. Herein, this work is a comprehensive revision from the Web of Knowledge and Scopus databases on the recent information (2010–2019) regarding plant-derived alkaloids, their structural classification and bioactive properties.

Keywords

Alkaloids Medicinal plants Anticancer Phytochemicals Natural compounds 

References

  1. Adewusi E, Afolayan AJ (2010) A review of natural products with hepatoprotective activity. J Med Plants Res 4(13):1318–1334Google Scholar
  2. Ajungla L, Patil P, Barmukh R, Nikam T (2009) Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian J Biotechnol 8(7):317–322Google Scholar
  3. Alasvand M, Assadollahi V, Ambra R, Hedayati E, Kooti W, Peluso I (2019) Antiangiogenic effect of alkaloids. Oxid Med Cell Longev 2019:9475908.  https://doi.org/10.1155/2019/9475908CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alves de Almeida AC, de-Faria FM, Dunder RJ, LPB M, ARM S-B, Luiz-Ferreira A (2017) Recent trends in pharmacological activity of alkaloids in animal colitis: potential use for inflammatory bowel disease. Evid Based Complement Alternat Med 2017:8528210.  https://doi.org/10.1155/2017/8528210CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amirkia V, Heinrich M (2014) Alkaloids as drug leads–a predictive structural and biodiversity-based analysis. Phytochem Lett 10:xlviii–xlliiiGoogle Scholar
  6. Aniszewski T (ed) (2015) Alkaloids: chemistry, biology, ecology, and applications. Elsevier, Pacific Grove, CA, p 496Google Scholar
  7. Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schafer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825–4835.  https://doi.org/10.1038/onc.2012.493CrossRefPubMedGoogle Scholar
  8. Awaad AS, Al-Jaber NA, Soliman GA, Al-Outhman MR, Zain ME, Moses JE, El-Meligy RM (2012) New biological activities of Casimiroa edulis leaf extract and isolated compounds. Phytother Res 26(3):452–457.  https://doi.org/10.1002/ptr.3690CrossRefPubMedGoogle Scholar
  9. Baranska M, Roman M, Schulz H, Baranski R (2013) Recent advances in Raman analysis of plants: alkaloids, carotenoids, and polyacetylenes. Curr Anal Chem 9(1):108–127Google Scholar
  10. Baros S, Karsayová M, Jomová K, Gáspár A, Valko M (2012) Free radical scavenging capacity of Papaver somniferum L. and determination of pharmacologically active alkaloids using capillary electrophoresis. J Microbiol Biotech Food Sci 1:725Google Scholar
  11. Basey K, McGaw BA, Woolley JG (1992) Phygrine, an alkaloid from Physalis species. Phytochemistry 31(12):4173–4176.  https://doi.org/10.1016/0031-9422(92)80437-JCrossRefGoogle Scholar
  12. Bauer I, Knölker H-J (2012) Synthesis of pyrrole and carbazole alkaloids. In: Knölker H-J (ed) Alkaloid synthesis. Springer-Verlag, Berlin Heidelberg, pp 203–253Google Scholar
  13. Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185(1–3):1–9PubMedGoogle Scholar
  14. Bhadra K, Kumar GS (2011) Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: binding aspects and implications for drug design. Med Res Rev 31(6):821–862PubMedGoogle Scholar
  15. Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer, Berlin Heidelberg, p 592Google Scholar
  16. Böttger A, Vothknecht U, Bolle C, Alkaloids WA (2018) Lessons on Caffeine, Cannabis & Co. Springer, Berlin Heidelberg, pp 179–203Google Scholar
  17. Boulaaba M, Medini F, Hajlaoui H, Mkadmini K, Falleh H, Ksouri R, Isoda H, Smaoui A, Abdelly C (2019) Biological activities and phytochemical analysis of phenolic extracts from Salsola kali L. role of endogenous factors in the selection of the best plant extracts. S Afr J Bot 123:193–199Google Scholar
  18. Bozkurt B, Ahmet E, Gi K, Ma Ö, Berkov S, Bastida J, Nü S (2017) Alkaloid profiling of Galanthus woronowii Losinsk. by GC-MS and evaluation of its biological activity. Marmara Pharm J 21(4):915–920Google Scholar
  19. Bribi N (2018) Pharmacological activity of alkaloids: a review. Asian J Bot 1.  https://doi.org/10.63019/ajb.v1i2.467
  20. Buckingham J, Baggaley KH, Roberts AD, Szabo LF (2010) Dictionary of alkaloids, with CD-ROM. CRC Press, Boca Raton, FLGoogle Scholar
  21. Bunsupa S, Yamazaki M, Saito K (2012) Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Front Plant Sci 3:239.  https://doi.org/10.3389/fpls.2012.00239CrossRefPubMedPubMedCentralGoogle Scholar
  22. Byler KG, Wang C, Setzer WN (2009) Quinoline alkaloids as intercalative topoisomerase inhibitors. J Mol Model 15(12):1417PubMedGoogle Scholar
  23. Cai X-H, Li Y, Su J, Liu Y-P, Li X-N, Luo X-D (2011) Novel indole and quinoline alkaloids from Melodinus yunnanensis. Nat Prod Biopros 1(1):25–28Google Scholar
  24. Cardoso-Lopes EM, Maier JA, da Silva MR, Ragasini LO, Simote SY, Lopes NP, Pirani JR, Bolzani VD, Young MCM (2010) Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer disease. Molecules 15(12):9205–9213.  https://doi.org/10.3390/molecules15129205CrossRefPubMedPubMedCentralGoogle Scholar
  25. Carvalho JCB, dos Santos AH, Lobo JFR, Ferreira JLP, Oliveira AP, Rocha L (2013) Pyrrolizidine alkaloids in two endemic capeverdian Echium species. Biochem Syst Ecol 50:1–6Google Scholar
  26. Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W (2013) Aporphine alkaloids: a kind of alkaloids’ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem 25:18Google Scholar
  27. Chen AH, Liu YP, Wang ZX, Ma YL, Jiang ZH, Lai L, Guo RR, Long JT, Lin SX, Xu W, Fu YH (2017) Structurally diverse indole alkaloids from Ochrosia elliptica. Heterocycles 94(4):743.  https://doi.org/10.3987/com-16-13626CrossRefGoogle Scholar
  28. Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT (2017) The ERK-ZEB1 pathway mediates epithelial mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36(2):242–253.  https://doi.org/10.1038/onc.2016.195CrossRefGoogle Scholar
  29. Choi JS, Kim J-H, Ali MY, Min B-S, Kim G-D, Jung HA (2014) Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 98:199–208.  https://doi.org/10.1016/j.fitote.2014.08.006CrossRefPubMedGoogle Scholar
  30. Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ (2015) Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma coptidis and their molecular docking studies. J Ethnopharmacol 171:28–36.  https://doi.org/10.1016/j.jep.2015.05.020CrossRefPubMedGoogle Scholar
  31. Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48(3):798–802.  https://doi.org/10.1016/j.fct.2009.12.009CrossRefPubMedGoogle Scholar
  32. Choudhary MI, Adhikari A, Rasheed S, Marasini BP, Hussain N, Kaleem WA, Atta-ur R (2011) Cyclopeptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation. Phytochem Lett 4(4):404–406.  https://doi.org/10.1016/j.phytol.2011.08.006CrossRefGoogle Scholar
  33. Ciric A, Vinterhalter B, Savikin-Fodulovic K, Sokovic M, Vinterhalter D (2008) Chemical analysis and antimicrobial activity of methanol extracts of celandine (Chelidonium majus L.) plants growing in nature and cultured in vitro. Arch Biol Sci 60(1):7P–8P.  https://doi.org/10.2298/abs080107pcCrossRefGoogle Scholar
  34. Cortes N, Alvarez R, Osorio EH, Alzate F, Berkov S, Osorio E (2015) Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J Pharm Biomed Anal 102:222–228.  https://doi.org/10.1016/j.jpba.2014.09.022CrossRefPubMedGoogle Scholar
  35. Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Liu L (2016) Sanguinaria canadensis: traditional medicine, phytochemical composition, biological activities and current uses. Int J Mol Sci 17(9):32.  https://doi.org/10.3390/ijms17091414CrossRefGoogle Scholar
  36. Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386PubMedGoogle Scholar
  37. Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72.  https://doi.org/10.1016/j.mtchem.2018.05.001CrossRefGoogle Scholar
  38. Diamond A, Desgagné-Penix I (2016) Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol J 14(6):1319–1328PubMedGoogle Scholar
  39. Diaz G (2015) Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins (Basel) 7(12):5408–5416Google Scholar
  40. Ding PL, Liao ZX, Huang H, Zhou P, Chen DF (2006) (+)-12 alpha-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg Med Chem Lett 16(5):1231–1235.  https://doi.org/10.1016/j.bmcl.2005.11.073CrossRefPubMedGoogle Scholar
  41. El Bazaoui A, Bellimam My A, Soulaymani A (2012) Tropane alkaloids of Datura innoxia from morocco. Zeitschrift für Naturforschung C 67(1-2):8–14Google Scholar
  42. Encyclopædia Britannica (2018) Alkaloid. https://www.britannica.com/science/alkaloid. Accessed 30 June 2019.
  43. Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem Soc Rev 43(13):4633–4657.  https://doi.org/10.1039/C3CS60015GCrossRefPubMedGoogle Scholar
  44. Evans WC (2009) Trease and evans’ pharmacognosy. Saunders Ltd., Elsevier, Edinburgh, p 616Google Scholar
  45. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66.  https://doi.org/10.1146/annurev.arplant.52.1.29CrossRefPubMedGoogle Scholar
  46. Feng T, Wang YY, Su J, Li Y, Cai XH, Luo XD (2011) Amaryllidaceae alkaloids from Lycoris radiata. Helv Chim Acta 94(1):178–183.  https://doi.org/10.1002/hlca.201000176CrossRefGoogle Scholar
  47. Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85.  https://doi.org/10.1007/s11101-014-9384-yCrossRefGoogle Scholar
  48. Friedman M (2015) Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem 63(13):3323–3337.  https://doi.org/10.1021/acs.jafc.5b00818CrossRefPubMedGoogle Scholar
  49. Gañán NA, Dias AMA, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga MEM (2016) Alkaloids from Chelidonium majus L.: fractionated supercritical CO2 extraction with co-solvents. Sep Purif Technol 165:199–207.  https://doi.org/10.1016/j.seppur.2016.04.006CrossRefGoogle Scholar
  50. Gao F, Li Y-Y, Wang D, Huang X, Liu Q (2012) Diterpenoid alkaloids from the Chinese traditional herbal “Fuzi” and their cytotoxic activity. Molecules 17(5):5187–5194PubMedPubMedCentralGoogle Scholar
  51. Ghedira K, Richard B, Massiot G, Sevenet T (1998) Alkaloids of Alstonia angustiloba. Phytochem 27:3955–3962Google Scholar
  52. Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI (2018) Recent advancement of piperidine moiety in treatment of cancer-A review. Eur J Med Chem 157:480–502.  https://doi.org/10.1016/j.ejmech.2018.08.017CrossRefPubMedGoogle Scholar
  53. Goyal S (2013) Ecological role of alkaloids. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes: 149–71.Google Scholar
  54. Guirimand G, Courdavault V, St-Pierre B, Burlat V. Biosynthesis and regulation of alkaloids. Plant developmental biology-biotechnological perspectives. Springer Berlin; 2010. p. 139-160.Google Scholar
  55. Halliwell B, CGutteridge JMC (2015) Reactive species in disease: friends or foes? In: Halliwell B, CGutteridge JMC (eds) Free radicals in biology and medicine, 5th edn. Oxford University Press, London, pp 511–638Google Scholar
  56. Hamid HA, Ramli ANM, Yusoff MM (2017) Indole alkaloids from plants as potential leads for antidepressant drugs: a mini review. Front Pharmacol 8:96.  https://doi.org/10.3389/fphar.2017.00096CrossRefPubMedPubMedCentralGoogle Scholar
  57. Henning CP (2013) Compuestos secundarios nitrogenados: alcaloides. In: Ringuelet J, Viña S (eds) Productos Naturales Vegetales. Editorial de la Universidad de la Plata, La Plata, Argentina, p 18Google Scholar
  58. Hisiger S, Jolicoeur M (2007) Analysis of Catharanthus roseus alkaloids by HPLC. Phytochem Rev 6(2):207–234.  https://doi.org/10.1007/s11101-006-9036-yCrossRefGoogle Scholar
  59. Hoyer GA, Huth A, Nitschke I (1978) Holarresine- a new steroidal alkaloid from Holarrhena floribunda. J Med Plant Res 34:47–52Google Scholar
  60. Hu J, Shi X, Chen J, Mao X, Zhu L, Yu L, Shi J (2014) Alkaloids from Toddalia asiatica and their cytotoxic, antimicrobial and antifungal activities. Food Chem 148:437–444.  https://doi.org/10.1016/j.foodchem.2012.12.058CrossRefPubMedGoogle Scholar
  61. Huang S-D, Zhang Y, He H-P, Li S-F, Tang G-H, Chen D-Z, Cao M-M, Di Y-T, Hao X-J (2013) A new amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chin J Nat Med 11(4):406–410.  https://doi.org/10.1016/S1875-5364(13)60060-6CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hulcova D, Breiterova K, Siatka T, Klimova K, Davani L, Safratova M, Host’alkova A, De Simone A, Andrisano V, Cahlikova L (2018) Amaryllidaceae alkaloids as potential glycogen synthase kinase-3 beta inhibitors. Molecules 23(4):9.  https://doi.org/10.3390/molecules23040719CrossRefGoogle Scholar
  63. Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci 14(3):341PubMedPubMedCentralGoogle Scholar
  64. Inada M, Shindo M, Kobayashi K, Sato A, Yamamoto Y, Akasaki Y, Ichimura K, Tanuma S-I (2019) Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS One 14(5):e0216358.  https://doi.org/10.1371/journal.pone.0216358CrossRefPubMedPubMedCentralGoogle Scholar
  65. Jansen G, Jürgens H-U, Schliephake E, Ordon F (2012) Effect of the soil pH on the alkaloid content of Lupinus angustifolius. Int J Agron 2012Google Scholar
  66. Jayakumar K, Murugan K (2016) Solanum alkaloids and their pharmaceutical roles: a review. J Anal Pharm Res 3(6):00075Google Scholar
  67. Jiang J, Hu C (2009) Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules 14(5):1852–1859PubMedPubMedCentralGoogle Scholar
  68. Jiang X-Y, Yang H, Zhao Y (2006) The determinnation of steroidal alkaloid content in Solanum nigrum L. Food Science 27:224–227Google Scholar
  69. Jing H, Liu J, Liu H, Xin H (2014) Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus. Sci World J 2014:839548Google Scholar
  70. Jirschitzka J, Schmidt GW, Reichelt M, Schneider B, Gershenzon J, D’Auria JC (2012) Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Natl Acad Sci 109(26):10304.  https://doi.org/10.1073/pnas.1200473109CrossRefPubMedGoogle Scholar
  71. Joselin J, Brintha TSS, Florence AR, Jeeva S (2012) Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pac J Trop Dis 2:S260–S2S4.  https://doi.org/10.1016/S2222-1808(12)60162-5CrossRefGoogle Scholar
  72. Joshi P, Vishwakarma RA, Bharate SB (2017) Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur J Med Chem 138:273–292.  https://doi.org/10.1016/j.ejmech.2017.06.047CrossRefPubMedGoogle Scholar
  73. Kaur R, Arora S (2015) Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2(3):1–8Google Scholar
  74. Kaur R, Matta T, Kaur H (2019) Plant derived alkaloids. Saudi J Life Sci 2(5):158–189Google Scholar
  75. Khan AY, Kumar GS (2015) Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys Rev 7(4):407–420PubMedPubMedCentralGoogle Scholar
  76. Kim M, Kim S-O, Lee M, Lee JH, Jung W-S, Moon S-K, Kim Y-S, Cho K-H, Ko C-N, Lee EH (2014) Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid β and interferon-γ in rat brain microglia. Eur J Pharmacol 740:504–511.  https://doi.org/10.1016/j.ejphar.2014.06.037CrossRefPubMedGoogle Scholar
  77. Kintsurashvili LG, Vachnadze VY (2000) Alkaloids of Glaucium corniculatum and G. flavum growing in Georgia. Chem Nat Compd 36(2):225–226.  https://doi.org/10.1007/bf02236441CrossRefGoogle Scholar
  78. Koetz M, Santos TG, Rayane M, Henriques AT (2017) Quantification of atropine in leaves of Atropa belladonna: development and validation of method by high-perfomance liquid chromatography (HPLC). Drug Analy Res 1(1):44–49Google Scholar
  79. Koleva II, van Beek TA, Soffers AE, Dusemund B, Rietjens IM (2012) Alkaloids in the human food chain–natural occurrence and possible adverse effects. Mol Nutr Food Res 56(1):30–52PubMedGoogle Scholar
  80. Konrath EL, Passos CS, Klein-Júnior LC, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 65(12):1701–1725.  https://doi.org/10.1111/jphp.12090
  81. Kramell R, Schmidt J, Herrmann G, Schliemann W (2005) N-(Jasmonoyl)tyrosine-derived compounds from flowers of broad beans (Vicia faba). J Nat Prod 68(9):1345–1349.  https://doi.org/10.1021/np0501482CrossRefPubMedGoogle Scholar
  82. Ku W-F, Tan S-J, Low Y-Y, Komiyama K, Kam T-S (2011) Angustilobine and andranginine type indole alkaloids and an uleine–secovallesamine bisindole alkaloid from Alstonia angustiloba. Phytochemistry 72(17):2212–2218.  https://doi.org/10.1016/j.phytochem.2011.08.001CrossRefPubMedGoogle Scholar
  83. Kuete V (2014) 21 - Health Effects of Alkaloids from African Medicinal Plants. In: Kuete V (ed) Toxicological Survey of African Medicinal Plants. Elsevier, London, pp 611–633Google Scholar
  84. Kukula-Koch WA, Widelski J (2017) Chapter 9 - Alkaloids. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Boston, pp 163–198Google Scholar
  85. Kumar P, Sharma B, Bakshi N (2009) Biological activity of alkaloids from Solanum dulcamara L. Nat Prod Res 23(8):719–723.  https://doi.org/10.1080/14786410802267692CrossRefPubMedGoogle Scholar
  86. Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7Google Scholar
  87. Lee SK, Nam K-A, Heo Y-H (2003) Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 69(01):21–25.  https://doi.org/10.1055/s-2003-37021CrossRefPubMedGoogle Scholar
  88. Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y (2011) Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19(1):83–87.  https://doi.org/10.1016/j.phymed.2011.06.031CrossRefPubMedGoogle Scholar
  89. Li D-h, Guo J, Bin W, Zhao N, K-b W, Li J-y, Li Z-l, H-m H (2016) Two new benzylisoquinoline alkaloids from Thalictrum foliolosum and their antioxidant and in vitro antiproliferative properties. Arch Pharm Res 39(7):871–877PubMedGoogle Scholar
  90. Liu H-L, Huang X-Y, Dong M-L, Xin G-R, Guo Y-W (2010) Piperidine alkaloids from Chinese Mangrove Sonneratia hainanensis. Planta Med 76(09):920–922.  https://doi.org/10.1055/s-0029-1240811CrossRefPubMedGoogle Scholar
  91. Lu J-J, Bao J-L, Chen X-P, Huang M, Wang Y-T (2012) Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternat Med 2012Google Scholar
  92. Ma H, He K, Zhu J, Li X, Ye X (2019) The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: a systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia 134:210–220.  https://doi.org/10.1016/j.fitote.2019.03.003CrossRefPubMedGoogle Scholar
  93. Macabeo APG, Krohn K, Gehle D, Read RW, Brophy JJ, Cordell GA, Franzblau SG, Aguinaldo AM (2005) Indole alkaloids from the leaves of Philippine Alstonia scholaris. Phytochemistry 66(10):1158–1162.  https://doi.org/10.1016/j.phytochem.2005.02.018CrossRefPubMedGoogle Scholar
  94. Mahlangu ZP, Botha FS, Madoroba E, Chokoe K, Elgorashi EE (2017) Antimicrobial activity of Albizia gummifera (J.F.Gmel.) C.A.Sm leaf extracts against four Salmonella serovars. S Afr J Bot 108:132–136.  https://doi.org/10.1016/j.sajb.2016.10.015CrossRefGoogle Scholar
  95. Mao Z, Huang S, Gao L, Wang A, Huang P (2014) A novel and versatile method for the enantioselective syntheses of tropane alkaloids. Sci China Chem 57(2):252–264.  https://doi.org/10.1007/s11426-013-4998-2CrossRefGoogle Scholar
  96. Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM (2013) Quinoline: a versatile heterocyclic. Saudi Pharm J 21(1):1–12.  https://doi.org/10.1016/j.jsps.2012.03.002CrossRefPubMedGoogle Scholar
  97. Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249Google Scholar
  98. Mazumder PM, Das S, Das MK (2011) Phyto-pharmacology of Berberis aristata DC: a review. J Drug Deliv Therap 1(2)Google Scholar
  99. Mbeunkui F, Grace MH, Lategan C, Smith PJ, Raskin I, Lila MA (2012) In vitro antiplasmodial activity of indole alkaloids from the stem bark of Geissospermum vellosii. J Ethnopharmacol 139(2):471–477.  https://doi.org/10.1016/j.jep.2011.11.036CrossRefPubMedGoogle Scholar
  100. McNulty J, Nair JJ, Little JRL, Brennan JD, Bastida J (2010) Structure–activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg Med Chem Lett 20(17):5290–5294.  https://doi.org/10.1016/j.bmcl.2010.06.130CrossRefPubMedGoogle Scholar
  101. Meira M, EPd S, David JM, David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Revista Bras Farmacog 22(3):682–713Google Scholar
  102. Michael JP (2008) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 25(1):139–165PubMedGoogle Scholar
  103. Milugo TK, Omosa LK, Ochanda JO, Owuor BO, Wamunyokoli FA, Oyugi JO, Ochieng JW (2013) Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): further evidence to support biotechnology in traditional medicinal plants. BMC Complement Altern Med 13(1):285.  https://doi.org/10.1186/1472-6882-13-285CrossRefPubMedPubMedCentralGoogle Scholar
  104. Mirhadi E, Rezaee M, Malaekeh-Nikouei B (2018) Nano strategies for Berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 104:465–473.  https://doi.org/10.1016/j.biopha.2018.05.067CrossRefPubMedGoogle Scholar
  105. Mizrachi N, Levy S, Goren Z (2000) Fatal poisoning from Nicotiana glauca leaves: identification of anabasine by gas-chromatography/mass spectrometry. J Forensic Sci 45(3):736–741PubMedGoogle Scholar
  106. Moreira R, Pereira D, Valentão P, Andrade P (2018) Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int J Mol Sci 19(6):1668PubMedCentralGoogle Scholar
  107. Muthna D, Cmielova J, Tomsik P, Rezacova M (2013) Boldine and related aporphines: from antioxidant to antiproliferative properties. Nat Prod Commun 8(12):1934578X1300801235Google Scholar
  108. Nadkarni NM, Matelson TJ, Haber WA (1995) Structural characteristics and floristic composition of a Neotropical Cloud Forest, Monteverde, Costa Rica. J Trop Ecol 11(4):481–495Google Scholar
  109. Nair JJ, Bastida J, Codina C, Viladomat F, van Staden J (2013) Alkaloids of the South African amaryllidaceae: a review. Nat Prod Commun 8(9):1934578X1300800938.  https://doi.org/10.1177/1934578x1300800938CrossRefGoogle Scholar
  110. National Center for Biotechnology Information. Coniine, CID=9985. 2019a. https://pubchem.ncbi.nlm.nih.gov/compound/Coniine. Accessed 8 Jul 2019.
  111. National Center for Biotechnology Information. Morphine, CID=5288826. 2019b. https://pubchem.ncbi.nlm.nih.gov/compound/Morphine. Accessed 8 Jul 2019.
  112. Ncube B, Nair JJ, Rárová L, Strnad M, Finnie JF, Van Staden J (2015) Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. S Afr J Bot 97:69–76.  https://doi.org/10.1016/j.sajb.2014.12.005CrossRefGoogle Scholar
  113. Ng YP, Or TCT, Ip NY (2015) Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem Int 89:260–270.  https://doi.org/10.1016/j.neuint.2015.07.018
  114. Nino J, Hincapié GM, Correa YM, Mosquera OM (2007) Alkaloids of Crinum x powellii “Album”(Amaryllidaceae) and their topoisomerase inhibitory activity. Zeitschrift für Naturforschung C 62(3-4):223–226Google Scholar
  115. Noriega P, Sola M, Barukcic A, Garcia K, Osorio E (2015) Cosmetic antioxidant potential of extracts from species of the Cinchona pubescens (Vahl). Int J Phytocosm Nat Ing 2(1):1–14Google Scholar
  116. O’Connor SE (2010) 1.25-alkaloids Comprehensive Natural Products II 1:977-1007.Google Scholar
  117. Oliveira SL, da Silva MS, Tavares JF, Sena-Filho JG, Lucena HF, Romero MA, Barbosa-Filho JM (2010) Tropane Alkaloids from erythroxylum genus: distribution and compilation of 13C-NMR spectral data. Chem Biodivers 7(2):302–326PubMedGoogle Scholar
  118. Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey KM, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165(6):1289–1295.  https://doi.org/10.1016/S0168-9452(03)00340-6CrossRefGoogle Scholar
  119. Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15(2):221–250Google Scholar
  120. Patel MB, Poisson J, Poussett JL, Rowson JM (1964) Alkaloids of the leaves of Rauwolfia vomitoria Afz. J Pharm Pharmacol 16(S1):163T–165T.  https://doi.org/10.1111/j.2042-7158.1964.tb07556.xCrossRefGoogle Scholar
  121. Pérez-Amador M, Ocotero VM, Castañeda JG, Esquinca AG (2007) Alkaloids in Solanum torvum Sw (Solanaceae). Int J Exp Bot 76:39–45Google Scholar
  122. Petitto V, Serafini M, Gallo FR, Multari G, Nicoletti M (2010) Alkaloids from Glaucium flavum from Sardinia. Nat Prod Res 24(11):1033–1035.  https://doi.org/10.1080/14786410902904418CrossRefPubMedGoogle Scholar
  123. Pirillo A, Catapano AL (2015) Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 243(2):449–461.  https://doi.org/10.1016/j.atherosclerosis.2015.09.032CrossRefPubMedGoogle Scholar
  124. Poklis J, Peace MR (2017) Identification of the Kratom (Mitragyna speciosa) alkaloid in commercially available products. University VCGoogle Scholar
  125. Porwal M, Kumar A (2015) Neuroprotective effect of Annona squamosa & (-) anonaine in decreased GABA receptor of epileptic rats. J Appl Pharmac Sci 5(1):018–023Google Scholar
  126. Ranjitha D, Sudha K (2015) Alkaloids in foods. Int J Pharmac Chem Biol Sci 5(4)Google Scholar
  127. Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New YorkGoogle Scholar
  128. Roy A (2015) Pharmacological activities of Indian Heliotrope (Heliotropium indicum L.): a review. J Pharmacogn Phytochem 4(3)Google Scholar
  129. Rukunga GM, Waterman PG (1996) New macrocyclic spermine (Budmunchiamine) Alkaloids from Albizia gummifera: with some observations on the structure−activity relationships of the Budmunchiamines. J Nat Prod 59(9):850–853.  https://doi.org/10.1021/np960397dCrossRefPubMedGoogle Scholar
  130. Sackett TE, Towers GHN, Isman MB (2007) Effects of furoquinoline alkaloids on the growth and feeding of two polyphagous lepidopterans. Chemoecology 17(2):97–101.  https://doi.org/10.1007/s00049-007-0367-yCrossRefGoogle Scholar
  131. Sagi S, Avula B, Wang Y-H, Khan IA (2016) Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry. Anal Bioanal Chem 408(1):177–190PubMedGoogle Scholar
  132. Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles FM, Musah RA, Bobrowski P, Miller MJS (2002) Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9(4):325–337.  https://doi.org/10.1078/0944-7113-00117
  133. Santana O, Reina M, Anaya AL, Hernández F, Izquierdo ME, González-Coloma A (2008) 3-O-acetyl-narcissidine, a bioactive alkaloid from Hippeastrum puniceum Lam.(Amaryllidaceae). Zeitschrift für Naturforschung C 63(9-10):639–643Google Scholar
  134. Santos AP, Moreno PRH (2004) Pilocarpus spp.: a survey of its chemical constituents and biological activities. Revista Brasil Ciênc Farmac 40:116–137Google Scholar
  135. Schramm S, Köhler N, Rozhon W (2019) Pyrrolizidine alkaloids: biosynthesis, biological activities and occurrence in crop plants. Molecules 24(3):498PubMedCentralGoogle Scholar
  136. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P (2010) Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 127(2):457–462.  https://doi.org/10.1016/j.jep.2009.10.013CrossRefPubMedGoogle Scholar
  137. Shih Y-T, Chen PS, Wu C-H, Tseng Y-T, Wu Y-C, Lo Y-C (2010) Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radical Biol Med 49(10):1471–1479.  https://doi.org/10.1016/j.freeradbiomed.2010.07.017CrossRefGoogle Scholar
  138. Shoeb M, Celik S, Jaspars M, Kumarasamy Y, MacManus SM, Nahar L, Thoo-Lin PK, Sarker SD (2005) Isolation, structure elucidation and bioactivity of schischkiniin, a unique indole alkaloid from the seeds of Centaurea schischkinii. Tetrahedron 61(38):9001–9006.  https://doi.org/10.1016/j.tet.2005.07.047CrossRefGoogle Scholar
  139. Shoeb M, MacManus SM, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the Caco-2 colon cancer cells. Tetrahedron 62(48):11172–11177.  https://doi.org/10.1016/j.tet.2006.09.020CrossRefGoogle Scholar
  140. Sibi G, Venkategowda A, Gowda L (2014) Isolation and characterization of antimicrobial alkaloids from Plumeria alba flowers against foodborne pathogens. Am J Life Sci 2:1–6Google Scholar
  141. Sichaem J, Worawalai W, Tip-pyang S (2012) Chemical constituents from the roots of Nauclea orientalis. Chem Nat Compd 48(5):827–830.  https://doi.org/10.1007/s10600-012-0393-zCrossRefGoogle Scholar
  142. Silva Teles MMR, Vieira Pinheiro AA, Da Silva Dias C, Fechine Tavares J, Barbosa Filho JM, Leitão Da Cunha EV (2019) Chapter three - alkaloids of the Lauraceae. In: Knölker H-J (ed) The alkaloids: chemistry and biology. Academic Press, San Diego, CA, pp 147–304Google Scholar
  143. Silva AFS, de Andrade JP, Machado KRB, Rocha AB, Apel MA, Sobral MEG, Henriques AT, Zuanazzi JAS (2008) Screening for cytotoxic activity of extracts and isolated alkaloids from bulbs of Hippeastrum vittatum. Phytomedicine 15(10):882–885.  https://doi.org/10.1016/j.phymed.2007.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  144. Silva VG, Silva RO, Damasceno SR, Carvalho NS, Prudêncio RS, Aragão KS, Guimarães MA, Campos SA, Véras LM, Godejohann M (2013) Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. J Nat Prod 76(6):1071–1077PubMedGoogle Scholar
  145. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28(1):367–388.  https://doi.org/10.1146/annurev.immunol.021908.132603CrossRefPubMedGoogle Scholar
  146. Singh S, Verma M, Malhotra M, Prakash S, Singh TD (2016) Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharm Biol 54(4):740–745.  https://doi.org/10.3109/13880209.2015.1073334CrossRefPubMedGoogle Scholar
  147. Song CE (2009) An overview of chinchona alkaloids in chemistry. In: Song CE (ed) Chinchona alkaloids in synthesis & catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Federal Republic of GermanyGoogle Scholar
  148. Sugeng RM, Sukari A, Rahmani M, Ee GC, Taufiq-Yap Y, Aimi N, Kitajima M (2001) Alkaloids from Aegle marmelos (Rutaceae). Mal J Anal Sci 7(2):463–465Google Scholar
  149. Suryawanshi H, Patel M (2011) Traditional uses, medicinal and phytopharmacological properties of Erythrina indica Lam.: an overview. Int J Res Ayurv Pharm 2(5):1531–1533Google Scholar
  150. Szőke É, Lemberkovics É, Kursinszki L (2013) Alkaloids derived from lysine: piperidine alkaloids. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes: 303–41.Google Scholar
  151. Talapatra SK, Talapatra B (2015) Alkaloids. General Introduction. In: Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 717–724Google Scholar
  152. Tallini L, Andrade J, Kaiser M, Viladomat F, Nair J, Zuanazzi J, Bastida J (2017) Alkaloid constituents of the Amaryllidaceae plant Amaryllis belladonna L. Molecules 22(9):1437PubMedCentralGoogle Scholar
  153. Thakur BK, Anthwal A, Singh Rawat D, Rawat B, Rawat M (2012) A review on genus Alseodaphne: phytochemistry pharmacology. Mini Rev Org Chem 9(4):433–445Google Scholar
  154. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah S-C, Mustafa MR, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. don. Molecules 18(8):9770–9784PubMedPubMedCentralGoogle Scholar
  155. Tundis R, Loizzo MR, Statti GA, Passalacqua NG, Peruzzi L, Menichini F (2007) Pyrrolizidine alkaloid profiles of the Senecio cineraria group (Asteraceae). ZNaturforsch(C) 62(7-8):467–472Google Scholar
  156. Ullah JN, Ali A, Ahmad B, Iqbal N, Adhikari A, Inayat ur R, Ali A, Ali S, Jahan A, Ali H, Ali I, Ullah A, Musharraf SG (2018) Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed Pharmacother 100:461–466.  https://doi.org/10.1016/j.biopha.2018.01.008CrossRefPubMedGoogle Scholar
  157. Umezawa K, Kojima I, Simizu S, Lin Y, Fukatsu H, Koide N, Nakade Y, Yoneda M (2018) Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative disease models. Hum Cell 31(2):95–101.  https://doi.org/10.1007/s13577-017-0196-4CrossRefPubMedGoogle Scholar
  158. Verotta L, Pilati T, Tato M, Elisabetsky E, Amador TA, Nunes DS (1998) Pyrrolidinoindoline alkaloids from Psychotria colorata. J Nat Prod 61(3):392–396.  https://doi.org/10.1021/np9701642CrossRefPubMedGoogle Scholar
  159. Wang Z, Liang G (2009) Zhong Yao Hua Xue. Shanghai Scientific & Technical Publishers, ShanghaiGoogle Scholar
  160. Wang F-P, Chen Q-H, Liu X-Y (2010) Diterpenoid alkaloids. Nat Prod Rep 27(4):529–570PubMedGoogle Scholar
  161. Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur Food Res Technol 233(6):1049–1055.  https://doi.org/10.1007/s00217-011-1588-4CrossRefGoogle Scholar
  162. Wang RC, Chen XM, Parissenti AM, Joy AA, Tuszynski J, Brindley DN, Wang ZX (2017) Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One 12(8):22.  https://doi.org/10.1371/journal.pone.0182400CrossRefGoogle Scholar
  163. Wansi JD, Devkota KP, Tshikalange E, Kuete V (2013) 14 - Alkaloids from the medicinal plants of Africa. In: Kuete V (ed) Medicinal Plant Research in Africa. Elsevier, Oxford, pp 557–605Google Scholar
  164. Wiedenfeld H, Roder E (1991) Pyrrolizidine alkaloids fro Ageratum conyzoides. Planta Med 57(6):578–579.  https://doi.org/10.1055/s-2006-960211CrossRefPubMedGoogle Scholar
  165. Wink M (ed) (2010) Annual plant reviews, functions and biotechnology of plant secondary metabolites. Blackwell Publishing Ltd, Annual Plant ReviewsGoogle Scholar
  166. Xie Z, Wei Y, Xu J, Lei J, Yu J (2019) Alkaloids from Piper nigrum synergistically enhanced the effect of paclitaxel against paclitaxel-resistant cervical cancer cells through the downregulation of Mcl-1. J Agric Food Chem 67(18):5159–5168.  https://doi.org/10.1021/acs.jafc.9b01320CrossRefPubMedGoogle Scholar
  167. Xu Z, Deng M (2017) Papaveraceae. In: Identification and control of common weeds: volume 2. Springer Netherlands, Dordrecht, pp 415–432Google Scholar
  168. Yadav NP, Chanotia C (2009) Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. Pharm Rev 2009:144–149Google Scholar
  169. Youssef DTA (2001) Alkaloids of the flowers of Hippeastrum vittatum. J Nat Prod 64(6):839–841.  https://doi.org/10.1021/np0005816CrossRefPubMedGoogle Scholar
  170. Zalaludin AS (2015) Extraction and isolation of chemical compounds from Tabernaemontana Divaricata (L.) R. BR. EX Roem. & Schult. Leaves with potential anti-neuraminidase activity: University Sains MalaysiaGoogle Scholar
  171. Zhan Z-J, Yu Q, Wang Z-L, Shan W-G (2010) Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities. Bioorg Med Chem Lett 20(21):6185–6187.  https://doi.org/10.1016/j.bmcl.2010.08.123CrossRefPubMedGoogle Scholar
  172. Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2001) New indole alkaloids from the bark of Nauclea orientalis. J Nat Prod 64(8):1001–1005.  https://doi.org/10.1021/np010042gCrossRefPubMedGoogle Scholar
  173. Zhang B-J, Bao M-F, Zeng C-X, Zhong X-H, Ni L, Zeng Y, Cai X-H (2014) Dimeric erythrina alkaloids from the flower of Erythrina variegata. Org Lett 16(24):6400–6403.  https://doi.org/10.1021/ol503190zCrossRefPubMedGoogle Scholar
  174. Zhang XP, Jin Y, Wu YA, Zhang CY, Jin DJ, Zheng QX, Li YB (2018) Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice. Sci Rep 8:10.  https://doi.org/10.1038/s41598-018-30823-wCrossRefGoogle Scholar
  175. Zheng J, Deng LJ, Chen MF, Xiao XZ, Xiao SW, Guo CP, Xiao GK, Bai LL, Ye WC, Zhang DM, Chen HR (2013) Elaboration of thorough simplified vinca alkaloids as antimitotic agents based on pharmacophore similarity. Eur J Med Chem 65:158–167.  https://doi.org/10.1016/j.ejmech.2013.04.057CrossRefPubMedGoogle Scholar
  176. Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19(21):3523–3531.  https://doi.org/10.2174/092986712801323171CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Erick Paul Gutiérrez-Grijalva
    • 1
  • Leticia Xochitl López-Martínez
    • 1
  • Laura Aracely Contreras-Angulo
    • 2
  • Cristina Alicia Elizalde-Romero
    • 2
  • José Basilio Heredia
    • 2
    Email author
  1. 1.Cátedras CONACYT-Centro de Investigación en Alimentación y DesarrolloCuliacánMexico
  2. 2.Centro de Investigación en Alimentación y DesarrolloCuliacánMexico

Personalised recommendations