Advertisement

Normal Physiology of Renal System

  • Simran Kaur
  • Manpreet Kaur
  • Narinder Pal Singh
Chapter
  • 23 Downloads
Part of the Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks book series (PNBSCC)

Abstract

Renal system is a vital organ system for survival. This chapter focuses initially on its functional anatomy followed by the detailed review of important function of kidney, namely filtration, transport across tubules, urine concentration, regulation of acid base balance, control of blood volume and composition and secretion of hormones. In the end, we discuss the basics of physiology of micturition and disorders associated with it.

References

  1. Abboud FM, Floras JS, Aylward PE, Guo GB, Gupta BN, Schmid PG (1990) Role of vasopressin in cardiovascular and blood pressure regulation. Blood Vessels 27(2–5):106–115PubMedGoogle Scholar
  2. Acharya V, Olivero J (2018) The kidney as an endocrine organ. Methodist Debakey Cardiovasc J 14(4):305–307PubMedPubMedCentralGoogle Scholar
  3. Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Phys 251(5 Pt 2):F904–F910Google Scholar
  4. Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30(5 Suppl):S198–S206PubMedGoogle Scholar
  5. Alpern R, Caplan M, Moe OW (2012) Seldin and Giebisch’s. The kidney, 5th edn. Elsevier, AmsterdamGoogle Scholar
  6. Amemiya M, Tabei K, Kusano E, Asano Y, Alpern RJ (1999) Incubation of OKP cells in low-K+ media increases NHE3 activity after early decrease in intracellular pH. Am J Phys 276(3):C711–C716Google Scholar
  7. Andersson K-E, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986PubMedGoogle Scholar
  8. Andreucci VE, Herrera-Acosta J, Rector FC, Seldin DW (1971) Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline. J Clin Invest 50(10):2230–2234PubMedPubMedCentralGoogle Scholar
  9. Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84(1):169–208PubMedGoogle Scholar
  10. Arendshorst WJ, Brännström K, Ruan X (1999) Actions of angiotensin II on the renal microvasculature. J Am Soc Nephrol 10(Suppl 11):S149–S161PubMedGoogle Scholar
  11. Barajas L (1979) Anatomy of the juxtaglomerular apparatus. Am J Phys 237(5):F333–F343Google Scholar
  12. Barajas L, Liu L, Powers K (1992) Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70(5):735–749PubMedGoogle Scholar
  13. Bastl CP, Hayslett JP (1992) The cellular action of aldosterone in target epithelia. Kidney Int 42(2):250–264PubMedGoogle Scholar
  14. Berliner RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24(5):730–744PubMedGoogle Scholar
  15. Bhaskar A, Oommen V (2018) A simple model for demonstrating the factors affecting glomerular filtration rate. Adv Physiol Educ 42(2):380–382PubMedGoogle Scholar
  16. Boron WF, Boulpaep EL (2016) Textbook of medical physiology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  17. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1(4 Pt 1):335–347PubMedGoogle Scholar
  18. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990 Jul) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70(3):665–699Google Scholar
  19. Brewster UC, Setaro JF, Perazella MA (2003) The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326(1):15–24PubMedGoogle Scholar
  20. Brooks DP (1997) Endothelin: the “prime suspect” in kidney disease. Physiology 12(2):83–89Google Scholar
  21. Burke M, Pabbidi MR, Farley J, Roman RJ (2014) Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 12(6):845–858PubMedPubMedCentralGoogle Scholar
  22. Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang C-L (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A 105(28):9805–9810PubMedPubMedCentralGoogle Scholar
  23. Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9(9):1627–1638PubMedGoogle Scholar
  24. Darnell JE (1997) STATs and gene regulation. Science 277(5332):1630–1635PubMedGoogle Scholar
  25. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94Google Scholar
  26. DiBona GF (1989) Neural control of renal function: cardiovascular implications. Hypertension 13(6 Pt 1):539–548PubMedGoogle Scholar
  27. DiBona GF (2003) Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: influence of dietary sodium. Acta Physiol Scand 177(3):285–289PubMedGoogle Scholar
  28. DiBona GF (2005 Mar) Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function. Exp Physiol 90(2):159–161PubMedGoogle Scholar
  29. DiBona GF, Sawin LL (1985) Renal nerve activity in conscious rats during volume expansion and depletion. Am J Phys 248(1 Pt 2):F15–F23Google Scholar
  30. Drinkhill MJ, McMahon NC, Hainsworth R (1996) Delayed sympathetic efferent responses to coronary baroreceptor unloading in anaesthetized dogs. J Physiol 497(Pt 1):261–269PubMedPubMedCentralGoogle Scholar
  31. Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624PubMedGoogle Scholar
  32. Eaton DC, Pooler JP (2016) Chapter 4: basic transport mechanisms. In: Vander’s renal physiology, 8th edn. McGraw-Hill Education, New York, pp 47–57Google Scholar
  33. Eaton DC, Pooler JP (2018a) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New York, pp 32–33. Chapter 2Google Scholar
  34. Eaton DC, Pooler JP (2018b) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New York, p 85. Chapter 6Google Scholar
  35. Eaton DC, Pooler JP (2018c) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New YorkGoogle Scholar
  36. Edvardsen P (1968) Nervous control of urinary bladder in cats. I. The collecting phase. Acta Physiol Scand 72(1):157–171PubMedGoogle Scholar
  37. Edvarsen P (1968) Nervous control of urinary bladder in cats. II. The expulsion phase. Acta Physiol Scand 72(1):172–182PubMedGoogle Scholar
  38. Eppel GA, Malpas SC, Denton KM, Evans RG (2004) Neural control of renal medullary perfusion. Clin Exp Pharmacol Physiol 31(5–6):387–396PubMedGoogle Scholar
  39. Epstein M (1992) Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev 72(3):563–621PubMedGoogle Scholar
  40. Ferreira-Filho SR, Cardoso CC, de Castro LAV, Oliveira RM, Sá RR (2011) Comparison of measured creatinine clearance and clearances estimated by Cockcroft-Gault and MDRD formulas in patients with a single kidney. Int J Nephrol 2011:4Google Scholar
  41. Forssmann W, Meyer M, Forssmann K (2001) The renal urodilatin system: clinical implications. Cardiovasc Res 51(3):450–462PubMedGoogle Scholar
  42. Forte LR (2005) Uroguanylin: physiological role as a natriuretic hormone. J Am Soc Nephrol 16(2):291–292PubMedGoogle Scholar
  43. Forte LR, London RM, Freeman RH, Krause WJ (2000) Guanylin peptides: renal actions mediated by cyclic GMP. Am J Physiol Renal Physiol 278(2):F180–F191PubMedGoogle Scholar
  44. Fountain JH, Lappin SL (2019) Physiology, renin angiotensin system. In: StatPearls. StatPearls Publishing, Treasure Island (FL)Google Scholar
  45. Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9(6):453–466PubMedPubMedCentralGoogle Scholar
  46. García NH, Ramsey CR, Knox FG (1998) Understanding the role of paracellular transport in the proximal tubule. Physiology 13(1):38–43Google Scholar
  47. Gaspari F, Perico N, Remuzzi G (1997) Measurement of glomerular filtration rate. Kidney Int Suppl 63:S151–S154PubMedGoogle Scholar
  48. Geibel JP (2006) Distal tubule acidification. J Nephrol 19(Suppl 9):S18–S26PubMedGoogle Scholar
  49. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2):382–391PubMedGoogle Scholar
  50. Gilbert SJ, Weiner DE (2017) Chapter 1: overview of kidney structure and function. In: National kidney foundation primer on kidney diseases, 7th edn. Elsevier, Philadelphia, pp 2–18Google Scholar
  51. Goetz KL, Hermreck AS, Slick GL, Starke HS (1970) Atrial receptors and renal function in conscious dogs. Am J Phys 219(5):1417–1423Google Scholar
  52. Good DW, George T, Watts BA (2002) Aldosterone inhibits HCO absorption via a nongenomic pathway in medullary thick ascending limb. Am J Physiol Renal Physiol 283(4):F699–F706PubMedGoogle Scholar
  53. Good DW, George T, Watts BA (2006) Nongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am J Physiol Cell Physiol 290(3):C757–C763PubMedGoogle Scholar
  54. Gorman AJ, Chen JS (1989) Reflex inhibition of plasma renin activity by increased left ventricular pressure in conscious dogs. Am J Phys 256(6 Pt 2):R1299–R1307Google Scholar
  55. Griendling KK, Alexander RW (1996) Endothelial control of the cardiovascular system: recent advances. FASEB J 10(2):283–292PubMedGoogle Scholar
  56. Gross M, Goldwasser E (1970) On the mechanism of erythropoietin-induced differentiation. VII. The relationship between stimulated deoxyribonucleic acid synthesis and ribonucleic acid synthesis. J Biol Chem 245(7):1632–1636PubMedGoogle Scholar
  57. Hall JE, Brands MW (2012) The renin-angiotensin-aldosterone system: renal mechanisms and circulatory homeostasis. In: Seldin and Giebisch’s. The kidney, 5th edn. Elsevier, AmsterdamGoogle Scholar
  58. Hall JE, Guyton AC (2011a) Guyton and Hall textbook of medical physiology, 12th edn. Saunders/Elsevier, Philadelphia, PA, pp 303–322Google Scholar
  59. Hall JE, Guyton AC (2011b) Guyton and Hall textbook of medical physiology, 11th edn. Saunders/Elsevier, Philadelphia, PA, pp 331–338. Chapter 27Google Scholar
  60. Hall JE, Guyton AC (2011c) Guyton and Hall textbook of medical physiology, 11th edn. Saunders/Elsevier, Philadelphia, PA, pp 350–351. Chapter 28Google Scholar
  61. Hamm LL, Nakhoul N, Hering-Smith KS (2015) Acid-base homeostasis. Clin J Am Soc Nephrol 10(12):2232–2242PubMedPubMedCentralGoogle Scholar
  62. Hansell P, Isaksson B, Sjöquist M, Jöquist MS (2000) Renal dopamine and noradrenaline excretion during CNS-induced natriuresis in spontaneously hypertensive rats: influence of dietary sodium. Acta Physiol Scand 168(1):257–266PubMedGoogle Scholar
  63. Henry JP, Gauer OH, Reeves JL (1956) Evidence of the atrial location of receptors influencing urine flow. Circ Res 4(1):85–90PubMedGoogle Scholar
  64. Hosomi H, Morita H (1996) Hepatorenal and hepatointestinal reflexes in sodium homeostasis. Physiology 11(3):103–107Google Scholar
  65. Hughson M, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122PubMedGoogle Scholar
  66. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH et al (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691PubMedPubMedCentralGoogle Scholar
  67. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A et al (2007) Alpha-Klotho as a regulator of calcium homeostasis. Science 316(5831):1615–1618PubMedGoogle Scholar
  68. Joy MS, Karagiannis PC, Peyerl FW (2007) Outcomes of secondary hyperparathyroidism in chronic kidney disease and the direct costs of treatment. J Manag Care Pharm 13(5):397–411PubMedGoogle Scholar
  69. Kim G-H (2008) Renal effects of prostaglandins and cyclooxygenase-2 inhibitors. Electrolyte Blood Press 6(1):35–41PubMedPubMedCentralGoogle Scholar
  70. Kim SM, Mizel D, Huang YG, Briggs JP, Schnermann J (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290(5):F1016–F1023PubMedGoogle Scholar
  71. Klein JD, Sands JM, Qian L, Wang X, Yang B (2004) Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B. J Am Soc Nephrol 15(5):1161–1167PubMedGoogle Scholar
  72. Knepper MA, Stephenson JL (1986) Urinary concentrating and diluting processes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders. Springer, Boston, MA, pp 713–726Google Scholar
  73. Koeppen B, Stanton B (2018) Renal physiology, 6th edn. Elsevier, AmsterdamGoogle Scholar
  74. Kone BC (1997) Nitric oxide in renal health and disease. Am J Kidney Dis 30(3):311–333PubMedGoogle Scholar
  75. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248(4953):378–381PubMedGoogle Scholar
  76. Kuhn M (2004) Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 99(2):76–82Google Scholar
  77. Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15(4):437–441Google Scholar
  78. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51Google Scholar
  79. Lanske B, Razzaque MS (2007) Premature aging in klotho mutant mice: cause or consequence? Ageing Res Rev 6(1):73–79PubMedPubMedCentralGoogle Scholar
  80. Laragh J (2001) Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens 14(9 Pt 1):837–854PubMedGoogle Scholar
  81. Leslie SW, Sharma S (2019) Anatomy, abdomen and pelvis, renal artery. In: StatPearls. StatPearls Publishing, Treasure Island (FL)Google Scholar
  82. Levey AS, Inker LA, Coresh J (2014) GFR estimation: from physiology to public health. Am J Kidney Dis 63(5):820–834PubMedPubMedCentralGoogle Scholar
  83. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339(5):321–328PubMedGoogle Scholar
  84. Levine DZ, Iacovitti M, Nash L, Vandorpe D (1988) Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J Clin Invest 81(6):1873–1878PubMedPubMedCentralGoogle Scholar
  85. Liang C-C, Muo C-H, Wang I-K, Chang C-T, Chou C-Y, Liu J-H et al (2014) Peptic ulcer disease risk in chronic kidney disease: ten-year incidence, ulcer location, and ulcerogenic effect of medications. PLoS One 9(2):e87952PubMedPubMedCentralGoogle Scholar
  86. Lote CJ, Haylor J (1989) Eicosanoids in renal function. Prostaglandins Leukot Essent Fatty Acids 36(4):203–217PubMedGoogle Scholar
  87. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ et al (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97(8):4386–4391PubMedPubMedCentralGoogle Scholar
  88. Madhav C, Menon MC, Chuang PY, He CJ (2012) The glomerular filtration barrier: components and crosstalk. Int J Nephrol 2012:9Google Scholar
  89. Mahony DT, Laferte RO, Blais DJ (1977) Integral storage and voiding reflexes: neurophysiologic concept of continence and micturition. Urology 9(1):95–106PubMedGoogle Scholar
  90. Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int 79:S1–S6Google Scholar
  91. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630Google Scholar
  92. McCann SM, Franci CR, Favaretto AL, Gutkowska J, Antunes-Rodrigues J (1997) Neuroendocrine regulation of salt and water metabolism. Braz J Med Biol 30(4):427–441Google Scholar
  93. Meyer M, Richter R, Brunkhorst R, Wrenger E, Schulz-Knappe P, Kist A et al (1996) Urodilatin is involved in sodium homeostasis and exerts sodium-state-dependent natriuretic and diuretic effects. Am J Phys 271(3 Pt 2):F489–F497Google Scholar
  94. Miller JA, Floras JS, Skorecki KL, Blendis LM, Logan AG (1991) Renal and humoral responses to sustained cardiopulmonary baroreceptor deactivation in humans. Am J Phys 260(3 Pt 2):R642–R648Google Scholar
  95. Mitchell GA (1950) The nerve supply of the kidneys. Acta Anat (Basel) 10(1–2):1–37Google Scholar
  96. Moore LC (1984) Tubuloglomerular feedback and SNGFR autoregulation in the rat. Am J Phys 247(2 Pt 2):F267–F276Google Scholar
  97. Morel F (1999) The loop of Henle, a turning-point in the history of kidney physiology. Nephrol Dial Transplant 14(10):2510–2515PubMedGoogle Scholar
  98. Morita H, Nishida Y, Hosomi H (1991) Neural control of urinary sodium excretion during hypertonic NaCl load in conscious rabbits: role of renal and hepatic nerves and baroreceptors. J Auton Nerv Syst 34(2–3):157–169PubMedGoogle Scholar
  99. Morita H, Matsuda T, Tanaka K, Hosomi H (1995) Role of hepatic receptors in controlling body fluid homeostasis. Jpn J Physiol 45(3):355–368PubMedGoogle Scholar
  100. Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9(11):1974–1986PubMedPubMedCentralGoogle Scholar
  101. Myers BD, Peterson C, Molina C, Tomlanovich SJ, Newton LD, Nitkin R et al (1988) Role of cardiac atria in the human renal response to changing plasma volume. Am J Phys 254(4 Pt 2):F562–F573Google Scholar
  102. Nakhoul NL, Chen LK, Boron WF (1993) Effect of basolateral CO2/HCO3- on intracellular pH regulation in the rabbit S3 proximal tubule. J Gen Physiol 102(6):1171–1205PubMedGoogle Scholar
  103. Nasrallah R, Hébert RL (2005) Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 289(2):F235–F246PubMedGoogle Scholar
  104. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266Google Scholar
  105. Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88(2):491S–499SPubMedGoogle Scholar
  106. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232(2):194–201PubMedGoogle Scholar
  107. Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53(1):159–227PubMedGoogle Scholar
  108. Pallone TL, Turner MR, Edwards A, Jamison RL (2003) Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284(5):R1153–R1175PubMedGoogle Scholar
  109. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PMT, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10(1):135–146PubMedGoogle Scholar
  110. Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier. J Am Soc Nephrol 21(11):1835–1841PubMedPubMedCentralGoogle Scholar
  111. Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 9(8):1461–1469PubMedPubMedCentralGoogle Scholar
  112. Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80(4):338–347PubMedGoogle Scholar
  113. Rhoades R, Tanner GA (2003) Medical physiology, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  114. Rhodin J (1958) Electron microscopy of the kidney. Am J Med 24(5):661–675PubMedGoogle Scholar
  115. Robertson GL (1987) Physiology of ADH secretion. Kidney Int Suppl 21:S20–S26PubMedGoogle Scholar
  116. Romano G, Favret G, Damato R, Bartoli E (1998) Proximal reabsorption with changing tubular fluid inflow in rat nephrons. Exp Physiol 83(1):35–48PubMedGoogle Scholar
  117. Rule AD, Glassock RJ (2013) GFR estimating equations: getting closer to the truth? Clin J Am Soc Nephrol 8(8):1414–1420PubMedPubMedCentralGoogle Scholar
  118. Sands JM, Layton HE (2009) The physiology of urinary concentration: an update. Semin Nephrol 29(3):178–195PubMedPubMedCentralGoogle Scholar
  119. Sands JM, Layton HE (2013) The urine concentrating mechanism and urea transporters. Kidney Physiol Pathophysiol 1:1143–1178Google Scholar
  120. Sands JM, Schrader DC (1991) An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts. J Clin Invest 88(1):137–142PubMedPubMedCentralGoogle Scholar
  121. Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47(3):312–318. Dallas Tex 1979Google Scholar
  122. Schlatter E, Salomonsson M, Persson AE, Greger R (1989) Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl-K+ cotransport. Pflugers Arch 414(3):286–290PubMedGoogle Scholar
  123. Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75(5):1638–1644PubMedPubMedCentralGoogle Scholar
  124. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F et al (2007) Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 292(2):F769–F779PubMedGoogle Scholar
  125. Skelton LA, Boron WF, Zhou Y (2010) Acid-base transport by the renal proximal tubule. J Nephrol 23(0 16):S4–S18PubMedPubMedCentralGoogle Scholar
  126. Smith HW (1952) The kidney: structure and function in health and disease. Postgrad Med J 28(317):191–192Google Scholar
  127. Smith MT, Muralidharan A (2015) Targeting angiotensin II type 2 receptor pathways to treat neuropathic pain and inflammatory pain. Expert Opin Ther Targets 19(1):25–35PubMedGoogle Scholar
  128. Soleimani M, Bergman JA, Hosford MA, McKinney TD (1990) Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J Clin Invest 86(4):1076–1083PubMedPubMedCentralGoogle Scholar
  129. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4(3):1201–1228PubMedPubMedCentralGoogle Scholar
  130. Spivak JL, Pham T, Isaacs M, Hankins WD (1991) Erythropoietin is both a mitogen and a survival factor. Blood 77(6):1228–1233PubMedGoogle Scholar
  131. Stanhewicz AE, Larry Kenney W (2015) Determinants of water and sodium intake and output. Nutr Rev 73(suppl_2):73–82PubMedGoogle Scholar
  132. Stockelberg D, Andersson P, Björnsson E, Björk S, Wadenvik H (1999) Plasma thrombopoietin levels in liver cirrhosis and kidney failure. J Intern Med 246(5):471–475PubMedGoogle Scholar
  133. Sugaya K, Nishijima S, Miyazato M, Ogawa Y (2005) Central nervous control of micturition and urine storage. J Smooth Muscle Res Nihon Heikatsukin Gakkai Kikanshi 41(3):117–132PubMedGoogle Scholar
  134. Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T et al (1998) Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol 18(3):349–355PubMedGoogle Scholar
  135. Tannen RL (2011) Renal ammonia production and excretion. In: Comprehensive physiology. American Cancer Society, New York, pp 1017–1059Google Scholar
  136. Wakabayashi S, Bertrand B, Shigekawa M, Fafournoux P, Pouysségur J (1994) Growth factor activation and “H(+)-sensing” of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem 269(8):5583–5588PubMedGoogle Scholar
  137. Wenger RH, Kurtz A (2011) Erythropoietin. Compr Physiol 1(4):1759–1794PubMedGoogle Scholar
  138. Wolf G, Neilson EG (1996) From converting enzyme inhibition to angiotensin II receptor blockade: new insight on angiotensin II receptor subtypes in the kidney. Exp Nephrol 4(Suppl 1):8–19PubMedGoogle Scholar
  139. Wu MS, Biemesderfer D, Giebisch G, Aronson PS (1996) Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J Biol Chem 271(51):32749–32752PubMedGoogle Scholar
  140. Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem 277(39):36782–36786PubMedGoogle Scholar
  141. Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3- and solute reabsorption are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci U S A 102(10):3875–3880PubMedPubMedCentralGoogle Scholar
  142. Zhuo JL, Li XC (2013) Proximal nephron. Compr Physiol 3(3):1079–1123PubMedPubMedCentralGoogle Scholar
  143. Zimmerhackl BL, Robertson CR, Jamison RL (1987) The medullary microcirculation. Kidney Int 31(2):641–647PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Simran Kaur
    • 1
  • Manpreet Kaur
    • 2
  • Narinder Pal Singh
    • 3
  1. 1.Department of PhysiologyAIIMSNew DelhiIndia
  2. 2.Department of PhysiologyVMMC and Safdarjung HospitalNew DelhiIndia
  3. 3.Department of MedicineMax Super Specialty HospitalGhaziabadIndia

Personalised recommendations