InECCE2019 pp 67-75 | Cite as

Sensitivity Maps Preparation for Electrical Capacitance Tomography Using Finite Element Approach

  • Wan A. N. Ropandi
  • N. A. Zulkiflli
  • J. PusppanathanEmail author
  • F. A. Phang
  • N. D. Nawi
  • M. E. Johana
  • N. H. A. Ngadiman
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 632)


Electrical Capacitance Tomography is part of Electrical Tomography which uses the concept of electric field distribution and it is widely used due to its advantages such as non-invasive, low-cost, high acquisition speed and relatively easy computation. The ECT system involves two computational problems in its mechanism which Forward Problem and Inverse Problem. The forward problem involves the computation of the potentials done at the voltage pick-up electrodes for a given set of current-carrying electrodes. This allows calculation for the distribution of the electrical voltage when the given with condition of known sensor structure and given permittivity distribution. The Forward Problem in this study refers to the sensitivity map which is later used for image reconstruction in the Inverse Problem image. This study explores sensitivity map generation and preparation which can be accomplished using the numerical method, for example, the Finite Element Method. Based on the simulated result, the sensitivity map for each projection shows different strength depending on the position and distance between the electrode pair.


Tomography Sensitivity maps Finite element method Electrical capacitance tomography 


  1. 1.
    Ren Z, Kowalski A, Rodgers TL (2017) Measuring inline velocity profile of shampoo by electrical resistance tomography (ERT). Flow Meas Instrum 58(September):31–37CrossRefGoogle Scholar
  2. 2.
    Rafiei-Naeini M, Wright P, McCann H (2007) Low-noise measurement for electrical impedance tomography. In: International conference on electrical bioimpedance and the 8th conference on electrical impedance tomography, 2007, pp 324–327Google Scholar
  3. 3.
    Ren Z, Member S, Yang W (2015) A miniature two-plate electrical capacitance tomography sensor. IEEE Sens J 15(5):3037–3049CrossRefGoogle Scholar
  4. 4.
    Mohd Razali NA et al (2015) Miniaturized planar tomography for multiphase stagnant sample detection. J Teknol 73(6):99–102Google Scholar
  5. 5.
    Yan H, Liu LJ, Qiang DZ (2009) An iterative electrical capacitance tomography image reconstruction algorithm. 12(2):9–12Google Scholar
  6. 6.
    Marashdeh Q, Teixeira FL (2004) Sensitivity matrix calculation for fast 3-D electrical capacitance tomography (ECT) of flow systems. 40(2):1204–1207Google Scholar
  7. 7.
    Xingxing Z, Jinchuang Z, Wenli F (2016) Computation of sensitivity map in adaptive electrical capacitance volume tomography based on voltage distribution. In: ICSPCC 2016—IEEE international conference on signal processing, communications and computing, conference proceedings, 2016, pp 1–4Google Scholar
  8. 8.
    Kang Y, Liu S, Liu J (2018) Image reconstruction algorithm for electrical capacitance tomography based on data correlation analysis. Flow Meas Instrum 62(July):113–122CrossRefGoogle Scholar
  9. 9.
    Liu QF, Han Y (2013) Analysis of the effect of stray capacitance on a charge/discharge-based electrical capacitance tomography system. Optik (Stuttg) 124(23):6009–6012CrossRefGoogle Scholar
  10. 10.
    Zhang L, Zhai Y, Wang X, Tian P (2018) Reconstruction method of electrical capacitance tomography based on wavelet fusion. Meas J Int Meas Confed 126(May):223–230CrossRefGoogle Scholar
  11. 11.
    Fan WR, Wang HX (2010) Maximum entropy regularization method for electrical impedance tomography combined with a normalized sensitivity map. Flow Meas Instrum 21(3):277–283CrossRefGoogle Scholar
  12. 12.
    Soleimani M (2005) Numerical modelling and analysis of the forward and inverse problems in electrical capacitance tomography. Int J Inf Syst Sci 1(1):193–207MathSciNetzbMATHGoogle Scholar
  13. 13.
    Oldenborger GA, Routh PS, Knoll MD, Routh S, Knoll MD (2005) Sensitivity of electrical resistivity tomography data to electrode position errors. Geophys J Int 163:1–9CrossRefGoogle Scholar
  14. 14.
    Ridzuan S et al (2015) Jurnal Teknologi full paper simulation study on electrical resistance tomography using metal wall for bubble detection. 6:31–35Google Scholar
  15. 15.
    Liyana H et al (2018) Sensitivity mapping for electrical tomography using finite element method. Int J Integr Eng 10(4):64–67Google Scholar
  16. 16.
    Yunus M, Hafiz M, Rahiman F, Abdul Y (2015) Sensitivity map generation for conducting strategy in electrical resistance tomography. J Teknol 17:91–97Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wan A. N. Ropandi
    • 1
  • N. A. Zulkiflli
    • 1
  • J. Pusppanathan
    • 2
    Email author
  • F. A. Phang
    • 3
  • N. D. Nawi
    • 4
  • M. E. Johana
    • 5
  • N. H. A. Ngadiman
    • 6
  1. 1.School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi Malaysia, UTMSkudaiMalaysia
  2. 2.Sports Innovation Technology Centre (SITC)Institute of Human Centered Engineering (iHumEn), Universiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Centre of Engineering Education (CEE)Universiti Teknologi MalaysiaSkudaiMalaysia
  4. 4.Faculty of Social Sciences and Humanities, School of EducationUniversiti Teknologi MalaysiaSkudaiMalaysia
  5. 5.Department of Mechatronic and Robotic Engineering (JER), Faculty of Electrical and Electronic EngineeringUniversiti Tun Hussein Onn MalaysiaParit RajaMalaysia
  6. 6.School of Mechanical Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations