Advertisement

InECCE2019 pp 59-66 | Cite as

Depth Evaluation of Slits on Galvanized Steel Plate Using a Low Frequency Eddy Current Probe

  • N. A. NadzriEmail author
  • M. M. Saari
  • M. A. H. P. Zaini
  • A. M. Halil
  • A. J. S. Hanifah
  • M. Ishak
Conference paper
  • 29 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 632)

Abstract

This study performs an analysis of a small eddy current probe configuration based on differential anisotropic magnetoresistance (AMR) sensors for characterization of small surface defects in galvanized steel plates. Owing to the advantage of the AMR sensor, the system of eddy current testing (ECT) with the AMR sensor has a huge benefit to detect sub-millimeter defects in steel structures. In this study, an ECT probe is developed by using AMR sensors to perform crack detection in 2-mm galvanized steel plates with regards to the depth of artificial slits where the ECT probe is scanned above the slits’ area. The signal that is detected by a lock-in amplifier is investigated with different frequencies of an excitation field. The line-scanned of signal intensity shows a clear intensity change at the crack area. This signal depends on the depth and frequencies. Finally, a correlation between depth and detected signals is clarified with respect to different frequencies.

Keywords

Slit detection Steel Defect Eddy current testing (ECT) Anisotropic magnetoresistance (AMR) 

Notes

Acknowledgements

The authors would like to thank the Universiti Malaysia Pahang (grant no. RDU170377 and PGRS190321) for laboratory facilities and financial assistance.

References

  1. 1.
    Tsukada K, Kiwa T, Kawata T, Ishihara Y (2006) Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation. IEEE Trans Magn 42:3315–3317CrossRefGoogle Scholar
  2. 2.
    Postolache O, Ribeiro A, Ramos HG (2009) Weld testing using eddy current probes and image processing. In: XIX IMEKO world congress fundamental and applied metrology, 1–6Google Scholar
  3. 3.
    Saari MM, Nadzri NA, Halil AM, Ishak M, Sakai K, Kiwa T, Tsukada K (2019) Design of eddy current testing probe for surface defect evaluation. Int J Autom Mech Eng 16:1–11Google Scholar
  4. 4.
    Hoang N (2018) Detection of surface crack in building structures using image processing technique with an improved Otsu method for image thresholding. Adv Civil Eng 2018:10 p. Article ID 3924120Google Scholar
  5. 5.
    García-Martín J, Gómez-Gil J, Vázquez-Sánchez E (2011) Non-destructive techniques based on eddy current testing. Sensors 11:2525–2565CrossRefGoogle Scholar
  6. 6.
    Sophian A, Tian G, Fan M (2017) Pulsed eddy current non-destructive testing and evaluation: a review. Chin J Mech Eng 30:500–514CrossRefGoogle Scholar
  7. 7.
    Ghanei S, Kashefi M, Mazinani M (2013) Eddy current nondestructive evaluation of dual phase steel. Mater Des 50:491–496CrossRefGoogle Scholar
  8. 8.
    Nadzri NA (2018) Development of eddy current testing system for welding inspection. In: 9th IEEE control and system graduate research colloquium, pp 94–98Google Scholar
  9. 9.
    He D, Shiwa M (2014) A magnetic sensor with amorphous wire. Sensors (Switzerland) 14:10644–10649CrossRefGoogle Scholar
  10. 10.
    He D, (2017) AMR Sensor and its Application on Nondestructive Evaluation. In Magnetic Sensors - Development Trends and Applications, pp 133–154 Google Scholar
  11. 11.
    Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T (2018) Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures. IEEE Trans Magn 54(11):1–5Google Scholar
  12. 12.
    Jander A, Smith C, Schneider R (2005) Magnetoresistive sensors for nondestructive evaluation. In: Proceedings of SPIE, pp 1–13Google Scholar
  13. 13.
    Tsukada K, Haga Y, Morita K, Song N, Sakai K, Kiwa T, Cheng W (2016) Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis. IEEE Trans Magn 52:1–4CrossRefGoogle Scholar
  14. 14.
    Mook G, Magdeburg O (2006) Deep penetrating eddy currents and probes. Materialprufung (MATER TEST), 1–14Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • N. A. Nadzri
    • 1
    Email author
  • M. M. Saari
    • 1
  • M. A. H. P. Zaini
    • 1
  • A. M. Halil
    • 2
  • A. J. S. Hanifah
    • 2
  • M. Ishak
    • 2
  1. 1.Faculty of Electrical and Electronics EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.Faculty of Mechanical and Manufacturing EngineeringUniversity Malaysia PahangPekanMalaysia

Personalised recommendations