Design of Circularly Polarized Thermally Activated Delayed Fluorescence Emitters

  • Gregory PietersEmail author
  • Lucas Frederic


This chapter focuses on the molecular designs of Small Organic Molecules (SOM) merging Circularly Polarized Luminescence (CPL) and Thermally Activated Delayed Fluorescence (TADF) properties. In Introduction, the benefits associated with the combination of these properties into SOM for their application as emitting materials to construct Circularly Polarized Organic Light Emitting Diodes (CPOLED) are presented. Next, the different molecular designs leading to CPTADF SOM are described depending on the nature of the chirality of these molecules (point, axial, or planar chirality). The synthesis, photophysical, and chiroptical properties of these molecules and the performance of related CPOLED devices are discussed.


Circularly Polarized Luminescence (CPL) Thermally Activated Delayed Fluorescence (TADF) Small Organic Molecules (SOM) Chirality Organic Light Emitting Diodes (OLED) 


  1. 1.
    Schadt M (1997) Liquid crystal materials and liquid crystal displays. Annu Rev Mater Sci 27:305–379CrossRefGoogle Scholar
  2. 2.
    Singh R, Unni KNN, Solanki A (2012) Improving the contrast ratio of OLED displays: an analysis of various techniques. Opt Mater 34(4):716–723CrossRefGoogle Scholar
  3. 3.
    Han J, Guo S, Lu H, Liu S, Zhao Q, Huang W (2018) Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv Opt Mater 6(17):1800538CrossRefGoogle Scholar
  4. 4.
    Zinna F, Giovanella U, Di Bari L (2015) Highly circularly polarized electroluminescence from a chiral europium complex. Adv Mater 27(10):1791PubMedCrossRefGoogle Scholar
  5. 5.
    Zinna F, Pasini M, Galeotti F, Botta C, Di Bari L, Giovanella U (2017) Design of lanthanide‐based oleds with remarkable circularly polarized electroluminescence. Adv Funct Mater 27(1):1603719CrossRefGoogle Scholar
  6. 6.
    Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW (1997) Circularly polarized electroluminescence from a polymer light-emitting diode. J Am Chem Soc 119(41):9909–9910CrossRefGoogle Scholar
  7. 7.
    Geng Y, Trajkovska A, Culligan SW, Ou JJ, Chen HMP, Katsis D, Chen SH (2003) origin of strong chiroptical activities in films of nonafluorenes with a varying extent of pendant chirality. J Am Chem Soc 125(46):14032–14038PubMedCrossRefGoogle Scholar
  8. 8.
    Lee DM, Song JW, Lee YJ, Yu CJ, Kim JH (2017) Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. Adv Mater 29(29):1700907CrossRefGoogle Scholar
  9. 9.
    Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ (2016) Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a Platinahelicene. J Am Chem Soc 138(31):9743–9746PubMedCrossRefGoogle Scholar
  10. 10.
    Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP (2017) Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev 46:915–1016PubMedCrossRefGoogle Scholar
  11. 11.
    Wong MY, Zysman-Colman EC (2017) Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater 29(22):1605444CrossRefGoogle Scholar
  12. 12.
    Czerwieniec R, Leitl MJ, Homeier HHH, Yersin H (2016) Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design. Coord Chem Rev 325:2–28CrossRefGoogle Scholar
  13. 13.
    Imagawa T, Hirata S, Totani K, Watanabe T, Vacha M (2015) Thermally activated delayed fluorescence with circularly polarized luminescence characteristics. Chem Commun 51:13268–13271CrossRefGoogle Scholar
  14. 14.
    Feuillastre S, Pauton M, Gao L, Desmarchelier A, Riives AJ, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G (2016) Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters. J Am Chem Soc 138(12):3990–3993PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sanchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, Vo B, Muller G, de La Moya S (2014) Circularly polarized luminescence by visible-light absorption in a chiral O-BODIPY dye: unprecedented design of CPL organic molecules from achiral chromophores. J Am Chem Soc 136(9):3346–3349PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238PubMedCrossRefGoogle Scholar
  17. 17.
    Song F, Xu Z, Zhang Q, Zhao Z, Zhang H, Zhao W, Qiu Z, Qi C, Zhang H, Sung HHY, Williams ID, Lam JWY, Zhao Z, Qin A, Ma D, Tang BZ (2018) Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv Funct Mater 28(17):1800051CrossRefGoogle Scholar
  18. 18.
    Li M, Li SH, Zhang D, Cai M, Duan L, Fung MK, Chen CF (2018) Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence. Angew Chem Int Ed 57(11):2889CrossRefGoogle Scholar
  19. 19.
    Wang Y-F, Lua H-Y, Chen C, Li M, Chen C-F (2019) 1,8-Naphthalimide-based circularly polarized TADF enantiomers as the emitters for efficient orange-red OLEDs. Org Electron 70:71–77CrossRefGoogle Scholar
  20. 20.
    Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H (2018) Solid-state emissive triarylborane-based [2.2]paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett 20(21):6868–6871PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Université Paris Saclay, SCBM, CEA Paris SaclayGif-sur-YvetteFrance

Personalised recommendations