Advertisement

Chapter 8 Reproduction in the Coral Acropora

  • Masaya MoritaEmail author
  • Seiya Kitanobo
Chapter
  • 38 Downloads

Abstract

The speciose reef coral Acropora spp. has synchronous spawning. Many of its congeners spawn at the same time; hence, gametes of the different species mix in the water column. Nevertheless, the different species are generally reproductively isolated, although introgressive hybridization has been reported for several congeners. The complex reproductive isolation mechanisms in Acropora species depend on spawning synchronisms and gamete recognition at fertilization. The reticulate evolution that results from introgressive hybridization in Acropora is thought to be related to speciation in the genus. In this chapter, we introduce reproductive isolation in Acropora, focusing on spawning synchronization, regulation of sperm motility, gamete-species recognition, and the potential for hybridization in nature.

Keywords

Coral Synchronous spawning Gamete recognition Hybridization Sperm limitation 

Notes

Acknowledgments

Preparation of this chapter was supported in part by a JSPS KAKENHI grant (#17K07414) to MM.

References

  1. Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawnings of 105 scleractinian coral species on the great-barrier-reef. Mar Biol 90:379–394CrossRefGoogle Scholar
  2. Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571CrossRefGoogle Scholar
  3. Baird AH, Kospartov MC, Purcell S (2010) Reproductive synchrony in Acropora assemblages on reefs of New Caledonia. Pac Sci 64:405–412CrossRefGoogle Scholar
  4. Coll JC, Bowden BF, Meehan GV, Konig GM, Carroll AR, Tapiolas DM, Aliño PM, Heaton A, De Nys R, Leone PAea (1994) Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar Biol 118:177–182CrossRefGoogle Scholar
  5. Coll JC, Leone PA, Bowden BF, Carroll AR, König GM, Heaton A, De Nys R, Maida M, Alino PM, Willis RH (1995) Chemical aspects of mass spawning in corals. II.(-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar Biol 123:137–143CrossRefGoogle Scholar
  6. Fogarty ND, Vollmer SV, Levitan DR (2012) Weak prezygotic isolating mechanisms in threatened Caribbean Acropora corals. PLoS One 7:e30486CrossRefGoogle Scholar
  7. Fukami H, Omori M, Shimoike K, Hayashibara T, Hatta M (2003) Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar Biol 142:679–684CrossRefGoogle Scholar
  8. Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Ina Y, Sugiyama T (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16:1607–1613CrossRefGoogle Scholar
  9. Heyward AJ, Babcock RC (1986) Self- and cross-fertilization in scleractinian corals. Mar Biol 90:191–195CrossRefGoogle Scholar
  10. Isomura N, Iwao K, Fukami H (2013) Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS One 8:e56701CrossRefGoogle Scholar
  11. Kitanobo S, Isomura N, Fukami H, Iwao K, Morita M (2016) The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol Lett 12:20160511CrossRefGoogle Scholar
  12. Levitan DR (2012) Contemporary evolution of sea urchin gamete-recognition proteins: experimental evidence of density-dependent gamete performance predicts shifts in allele frequencies over time. Evolution 66:1722–1736CrossRefGoogle Scholar
  13. Levitan DR, Ferrell DL (2006) Selection on gamete recognition proteins depends on sex, density, and genotype frequency. Science 312:267–269CrossRefGoogle Scholar
  14. Levitan DR, Petersen C (1995) Sperm limitation in the sea. Trends Ecol Evol 10:228–231CrossRefGoogle Scholar
  15. Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323CrossRefGoogle Scholar
  16. Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K (2012) Calaxin drives sperm chemotaxis by Ca(2)(+)-mediated direct modulation of a dynein motor. Proc Natl Acad Sci U S A 109:20497–20502CrossRefGoogle Scholar
  17. Morita M, Nishikawa A, Nakajima A, Iguchi A, Sakai K, Takemura A, Okuno M (2006) Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis. J Exp Biol 209:4574–4579CrossRefGoogle Scholar
  18. Nozawa Y, Isomura N, Fukami H (2015) Influence of sperm dilution and gamete contact time on the fertilization rate of scleractinian corals. Coral Reefs 34:1199–1206CrossRefGoogle Scholar
  19. Omori M, Fukami H, Kobinata H, Hatta M (2001) Significant drop of fertilization of Acropora corals in 1999: an after-effect of heavy coral bleaching? Limnol Oceanogr 46:704–706CrossRefGoogle Scholar
  20. Padilla-Gamino JL, Weatherby TM, Waller RG, Gates RD (2011) Formation and structural organization of the egg-sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30:371–380CrossRefGoogle Scholar
  21. Palumbi SR, Vollmer S, Romano S, Oliver T, Ladner J (2012) The role of genes in understanding the evolutionary ecology of reef building corals. Evol Ecol 26:317–335CrossRefGoogle Scholar
  22. Shiba K, Baba SA, Inoue T, Yoshida M (2008) Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci U S A 105:19312–19317CrossRefGoogle Scholar
  23. Teo A, Todd PA (2018) Simulating the effects of colony density and intercolonial distance on fertilisation success in broadcast spawning scleractinian corals. Coral Reefs 37:891CrossRefGoogle Scholar
  24. Van Oppen MJ, Willis BL, Vugt HW, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373CrossRefGoogle Scholar
  25. Van Oppen MJ, Willis BL, Van Rheede T, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:1363–1376CrossRefGoogle Scholar
  26. Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025CrossRefGoogle Scholar
  27. Willis BL, Babcock RC, Harrison PL, Wallace CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53–S65CrossRefGoogle Scholar
  28. Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489–517CrossRefGoogle Scholar
  29. Wolstenholme JK (2004) Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar Biol 144:567–582CrossRefGoogle Scholar
  30. Yoshida M, Murata M, Inaba K, Morisawa M (2002) A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci U S A 99:14831–14836CrossRefGoogle Scholar
  31. Yund PO (2000) How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol 15:10–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Sesoko Station, Tropical Biosphere Research CenterUniversity of the RyukyusMotobuJapan

Personalised recommendations