Advertisement

Chapter 7 Gametogenesis, Spawning, and Fertilization in Bivalves and Other Protostomes

  • Ryusaku DeguchiEmail author
  • Makoto Osada
Chapter
  • 15 Downloads

Abstract

The diversity of protostomes is demonstrated by the classification of these animals into more than 20 phyla and 1,000,000 species. Many species of aquatic protostomes are considered valuable for basic studies of reproduction as well as for fishery resources. The aim of this chapter is to provide a brief overview of the process and mechanism of fertilization in three protostome groups, the mollusks, annelids, and arthropods, in which various modes of sexual reproduction have evolved. Regarding the series of interactions between oocytes and sperm at fertilization, we have described the structural changes in gametes and the regulatory mechanisms of polyspermy block and increases in intracellular Ca2+, which enable the successful fertilization of oocytes. Prior to fertilization, oocytes and sperm are produced and matured in gonads and released at the optimal time. The second half of the article focuses on gonial cell multiplication, oocyte growth, and spawning (oocyte release and sperm release) in bivalve mollusks, in which these processes are precisely regulated by endocrine systems. Although bivalves share many endocrine regulatory molecules with vertebrates, they also employ unique mechanisms such as the use of the neurohormone serotonin (5-hydroxytryptamine, 5-HT), which acts directly on oocytes and sperm to induce oocyte maturation, sperm activation, and spawning.

Keywords

Mollusk Annelid Arthropod Bivalve Polyspermy block Ca2+ rise Gonial multiplication Vitellogenesis Oocyte maturation Sperm motility Spawning Endocrine control 

References

  1. Abdelmajid H, Leclerc-David C, Moreau M, Guerrier P, Ryazanov A (1993) Release from the metaphase I block in invertebrate oocytes: possible involvement of Ca2+/calmodulin-dependent kinase III. Int J Dev Biol 37(2):279–290PubMedGoogle Scholar
  2. Alavi SMH, Matsumura N, Shiba K, Itoh N, Takahashi KG, Inaba K, Osada M (2014) Roles of extracellular ions and pH in serotonin-dependent initiation of sperm motility in marine bivalve mollusks. Reproduction 147(3):331–345.  https://doi.org/10.1530/REP-13-0418CrossRefGoogle Scholar
  3. Albert PR, Tiberi M (2001) Receptor signaling and structure: insights from serotonin-1 receptors. Trends Endocrinol Metab 12(10):453–460.  https://doi.org/10.1016/S1043-2760(01)00498-2CrossRefPubMedGoogle Scholar
  4. Allen RD (1953) Fertilization and artificial activation in the egg of surf clam, Spisula solidissima. Biol Bull 105(2):213–239.  https://doi.org/10.2307/1538639CrossRefGoogle Scholar
  5. Anderson WA, Eckberg WR (1983) A cytological analysis of fertilization in Chaetopterus pergamentaceus. Biol Bull 165(1):110–118.  https://doi.org/10.2307/1541358CrossRefGoogle Scholar
  6. Angers A, Storozhuk MV, Duchaîne T, Castellucci VF, DesGroseillers L (1998) Cloning and functional expression of an Aplysia 5-HT receptor negatively coupled to adenylate cyclase. J Neurosci 18(15):5586–5593.  https://doi.org/10.1523/JNEUROSCI.18-15-05586.1998CrossRefPubMedPubMedCentralGoogle Scholar
  7. Awaji M, Matsumoto T, Yamano K, Kitamura M, Hara A (2011) Immunohistochemical observations of vitellin synthesis and accumulation processes in ovary of Ezo abalone Haliotis discus hannai. Fish Sci 77(2):191–197.  https://doi.org/10.1007/s12562-010-0316-5CrossRefGoogle Scholar
  8. Balkhair M, Al-Mushikhi A, Rivera R (2016) Embryogenesis and larval development of the Omani abalone (Haliotis mariae Wood, 1828). J Shellfish Res 35(3):625–631.  https://doi.org/10.2983/035.035.0308CrossRefGoogle Scholar
  9. Bandivdekar AH, Segal SJ, Koide SS (1991) Demonstration of serotonin receptors in isolated Spisula oocyte membrane. Invert Reprod Dev 19(2):147–150.  https://doi.org/10.1080/07924259.1991.9672168CrossRefGoogle Scholar
  10. Bandivdekar AH, Segal SJ, Koide SS (1992) Binding of 5-hydroxytryptamine analogs by isolated Spisula sperm membrane. Invert Reprod Dev 21(1):43–46.  https://doi.org/10.1080/07924259.1992.9672218CrossRefGoogle Scholar
  11. Bannon G, Brown GG (1980) Vesicle involvement in the egg cortical reaction of the horseshoe crab, Limulus polyphemus L. Dev Biol 76(2):418–427.  https://doi.org/10.1016/0012-1606(80)90390-5CrossRefPubMedGoogle Scholar
  12. Barazandeh M, Davis CS, Neufeld CJ, Coltman DW, Palmer AR (2013) Something Darwin didn't know about barnacles: spermcast mating in a common stalked species. Proc Biol Sci 280(1754):20122919.  https://doi.org/10.1098/rspb.2012.2919CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barbas B, Zappulla JP, Angers S, Bouvier M, Castellucci VF, DesGroseillers L (2002) Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. J Neurochem 80(2):335–345.  https://doi.org/10.1046/j.0022-3042.2001.00703.xCrossRefPubMedGoogle Scholar
  14. Barber BJ, Blake N (2006) Reproductive physiology (Chapter 6). In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, San Diego, CA, pp 357–416CrossRefGoogle Scholar
  15. Bianchi E, Wright GJ (2014) Izumo meets Juno: preventing polyspermy in fertilization. Cell Cycle 13(13):2019–2020.  https://doi.org/10.4161/cc.29461CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508(7497):483–487.  https://doi.org/10.1038/nature13203CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bigot L, Zatylny-Gaudin C, Rodet F, Bernay B, Boudry P, Favrel P (2012) Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas. Peptides 34(2):303–310.  https://doi.org/10.1016/j.peptides.2012.01.017CrossRefPubMedGoogle Scholar
  18. Blake NJ, Sastry AN (1979) Neurosecretory regulation of oögenesis in the bay scallop, Argopecten irradians irradians (Lamarck). In: Naylor E, Hortnoll RG (eds) Cyclic phenomena in marine plants and animals. Pergamon Press, New York, pp 181–190CrossRefGoogle Scholar
  19. Braley RD (1985) Serotonin-induced spawning in giant clams (Bivalvia: Tridacnidae). Aquaculture 47(4):321–325.  https://doi.org/10.1016/0044-8486(85)90217-0CrossRefGoogle Scholar
  20. Bridgham JT, Keay J, Ortlund EA, Thornton JW (2014) Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor. PLoS Genet 10(1):e1004058.  https://doi.org/10.1371/journal.pgen.1004058CrossRefPubMedPubMedCentralGoogle Scholar
  21. Brown GG, Humphreys WJ (1971) Sperm–egg interactions of Limulus polyphemus with scanning electron microscopy. J Cell Biol 51(3):904–907.  https://doi.org/10.1083/jcb.51.3.904CrossRefPubMedPubMedCentralGoogle Scholar
  22. Buckland-Nicks J, Howley B (1997) Spermiogenesis and sperm structure in relation to early events of fertilization in the limpet Tectura testudinalis (Müller, 1776). Biol Bull 193(3):306–319.  https://doi.org/10.2307/1542933CrossRefPubMedGoogle Scholar
  23. Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Biodiversity Information Services, ToowoombaGoogle Scholar
  24. Chuang SC, Lai WS, Chen JH (2006) Influence of ultraviolet radiation on selected physiological responses of earthworms. J Exp Biol 209(21):4304–4312.  https://doi.org/10.1242/jeb.02521CrossRefPubMedGoogle Scholar
  25. Ciocan CM, Cubero-Leon E, Puinean AM, Hill EM, Minier C, Osada M, Fenlon K, Rotchell JM (2010) Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. Environ Pollut 158(9):2977–2984.  https://doi.org/10.1016/j.envpol.2010.05.025CrossRefPubMedGoogle Scholar
  26. Clark WH Jr, Griffin FJ (1993) Acquisition and manipulation of penaeoidean gametes. In: McVey JP (ed) CRC handbook of mariculture: crustacean aquaculture, vol 1, 2nd edn. CRC, London, pp 133–151Google Scholar
  27. Clark WH Jr, Lynn JW, Yudin LA, Persyn HO (1980) Morphology of the cortical reaction in the eggs of Penaeus aztecus. Biol Bull 158(2):175–186.  https://doi.org/10.2307/1540929CrossRefGoogle Scholar
  28. Colas P, Dubé F (1998) Meiotic maturation in mollusc oocytes. Semin Cell Dev Biol 9(5):539–548.  https://doi.org/10.1006/scdb.1998.0248CrossRefPubMedGoogle Scholar
  29. Colas P, Launay C, van Loon AE, Guerrier P (1993) Protein synthesis controls cyclin stability in metaphase I-arrested oocytes of Patella vulgata. Exp Cell Res 208(2):518–521.  https://doi.org/10.1006/excr.1993.1275CrossRefPubMedGoogle Scholar
  30. Colwin LH, Colwin AL (1960) Formation of sperm entry holes in the vitelline membrane of Hydroides hexagonus (Annelida) and evidence of their lytic origin. J Biophys Biochem Cytol 7(2):315–320.  https://doi.org/10.1083/jcb.7.2.315CrossRefPubMedPubMedCentralGoogle Scholar
  31. Colwin LH, Colwin AL (1961) Changes in the spermatozoon during fertilization in Hydroides hexagonus (Annelida). I. Passage of the acrosomal region through the vitelline membrane. J Biophys Biochem Cytol 10(2):231–254.  https://doi.org/10.1083/jcb.10.2.231CrossRefPubMedPubMedCentralGoogle Scholar
  32. Costello DP, Davidson ME, Eggers A, Fox MH, Henley C (1957) Methods for obtaining and handling marine eggs and embryos. Lancaster Press, LancasterGoogle Scholar
  33. Dale B (2016) Achieving monospermy or preventing polyspermy? Res Rep Biol 2016(7):47–57.  https://doi.org/10.2147/RRB.S84085CrossRefGoogle Scholar
  34. Dan JC (1962) The vitelline coat of the Mytilus egg. I. Normal structure and effect of acrosomal lysin. Biol Bull 123(3):531–541.  https://doi.org/10.2307/1539574CrossRefGoogle Scholar
  35. Deguchi R (2007) Fertilization causes a single Ca2+ increase that fully depends on Ca2+ influx in oocytes of limpets (Phylum Mollusca, Class Gastropoda). Dev Biol 304(2):652–663.  https://doi.org/10.1016/j.ydbio.2007.01.017CrossRefPubMedGoogle Scholar
  36. Deguchi R, Morisawa M (2003) External Ca2+ is predominantly used for cytoplasmic and nuclear Ca2+ increases in fertilized oocytes of the marine bivalve Mactra chinensis. J Cell Sci 116(2):367–376.  https://doi.org/10.1242/jcs.00221CrossRefPubMedGoogle Scholar
  37. Deguchi R, Osanai K (1994a) Repetitive intracellular Ca2+ increases at fertilization and the role of Ca2+ in meiosis reinitiation from the first metaphase in oocytes of marine bivalves. Dev Biol 163(1):162–174.  https://doi.org/10.1006/dbio.1994.1132CrossRefPubMedGoogle Scholar
  38. Deguchi R, Osanai K (1994b) Meiosis reinitiation from the first prophase is dependent on the levels of intracellular Ca2+ and pH in oocytes of the bivalves Mactra chinensis and Limaria hakodatensis. Dev Biol 166(2):587–599.  https://doi.org/10.1006/dbio.1994.1339CrossRefPubMedGoogle Scholar
  39. Deguchi R, Osanai K (1995) Serotonin-induced meiosis reinitiation from the first prophase and from the first metaphase in oocytes of the marine bivalve Hiatella flaccida: respective changes in intracellular Ca2+ and pH. Dev Biol 171(2):483–496.  https://doi.org/10.1006/dbio.1995.1298CrossRefPubMedGoogle Scholar
  40. Deguchi R, Osanai K, Morisawa M (1996) Extracellular Ca2+ entry and Ca2+ release from inositol 1,4,5-trisphosphate-sensitive stores function at fertilization in oocytes of the marine bivalve Mytilus edulis. Development 122(11):3651–3660PubMedGoogle Scholar
  41. Deguchi R, Takeda N, Stricker SA (2015) Calcium signals and oocyte maturation in marine invertebrates. Int J Dev Biol 59(7-9):271–280.  https://doi.org/10.1387/ijdb.150239ssCrossRefPubMedGoogle Scholar
  42. Dheilly NM, Lelong C, Huvet A, Kellner K, Dubos M-P, Riviere G, Boudry P, Favrel P (2012) Gametogenesis in the Pacific oyster Crassostrea gigas: a microarray-based analysis identifies sex and stage specific genes. PLoS One 7(5):e36353.  https://doi.org/10.1371/journal.pone.0036353CrossRefPubMedPubMedCentralGoogle Scholar
  43. Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comp Neurol 398(1):1–12.  https://doi.org/10.1002/(SICI)1096-9861(19980817)398:1<1::AID-CNE1>3.0.CO;2-5CrossRefPubMedGoogle Scholar
  44. Di Cosmo A, Di Cristo C, Paolucci M (2001) Sex steroid hormone fluctuations and morphological changes of the reproductive system of the female of Octopus vulgaris throughout the annual cycle. J Exp Zool 289(1):33–47.  https://doi.org/10.1002/1097-010X(20010101/31)289:1<33::AID-JEZ4>3.0.CO;2-ACrossRefPubMedGoogle Scholar
  45. Di Cristo C (2013) Nervous control of reproduction in Octopus vulgaris: a new model. Invert Neurosci 13(1):27–34.  https://doi.org/10.1007/s10158-013-0149-xCrossRefPubMedGoogle Scholar
  46. Di Cristo C, Paolucci M, Iglesias J, Sanchez J, Di Cosmo A (2002) Presence of two neuropeptides in the fusiform ganglion and reproductive ducts of Octopus vulgaris: FMRFamide and gonadotropin-releasing hormone (GnRH). J Exp Zool 292(3):267–276.  https://doi.org/10.1002/jez.90000CrossRefPubMedGoogle Scholar
  47. Dorange G, Le Pennec M (1989) Ultrastructural study of oogenesis and oocytic degeneration in Pecten maximus from the Bay of St. Brieuc. Mar Biol 103(3):339–348.  https://doi.org/10.1007/BF00397268CrossRefGoogle Scholar
  48. Dubé F, Dufresne L (1990) Release of metaphase arrest by partial inhibition of protein synthesis in blue mussel oocytes. J Exp Zool 256(3):323–332.  https://doi.org/10.1002/jez.1402560312CrossRefGoogle Scholar
  49. Dubé F, Eckberg WR (1997) Intracellular pH increase driven by an Na+/H+ exchanger upon activation of surf clam oocytes. Dev Biol 190(1):41–54.  https://doi.org/10.1006/dbio.1997.8682CrossRefPubMedGoogle Scholar
  50. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452(7188):745–749.  https://doi.org/10.1038/nature06614CrossRefPubMedGoogle Scholar
  51. Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst 45:371–395.  https://doi.org/10.1146/annurev-ecolsys-120213-091627CrossRefGoogle Scholar
  52. Dupré EM, Barros C (2011) In vitro fertilization of the rock shrimp, Rhynchocinetes typus (Decapoda, Caridea): a review. Biol Res 44(2):125–133. S0716-97602011000200003CrossRefGoogle Scholar
  53. Eckberg WR (1981) An ultrastructural analysis of cytoplasmic localization in Chaetopterus pergamentaceus. Biol Bull 160(2):228–239.  https://doi.org/10.2307/1540883CrossRefGoogle Scholar
  54. Eckberg WR, Anderson WA (1985) Blocks to polyspermy in Chaetopterus. J Exp Zool 233(2):253–260.  https://doi.org/10.1002/jez.1402330213CrossRefPubMedGoogle Scholar
  55. Eckberg WR, Miller AL (1995) Propagated and nonpropagated calcium transients during egg activation in the annelid, Chaetopterus. Dev Biol 172(2):654–664.  https://doi.org/10.1006/dbio.1995.8043CrossRefPubMedGoogle Scholar
  56. Eckberg WR, Szuts EZ, Carroll AG (1987) Protein kinase C activity, protein phosphorylation and germinal vesicle breakdown in Spisula oocytes. Dev Biol 124(1):57–64.  https://doi.org/10.1016/0012-1606(87)90459-3CrossRefPubMedGoogle Scholar
  57. Eckelbarger KJ, Davis CV (1996) Ultrastructure of the gonad and gametogenesis in the eastern oyster, Crassostrea virginica. I. Ovary and oogenesis. Mar Biol 127(1):79–87.  https://doi.org/10.1007/BF00993648CrossRefGoogle Scholar
  58. Fallon JF, Austin CR (1967) Fine structure of gametes of Nereis limbata (Annelida) before and after interaction. J Exp Zool 166(2):225–241.  https://doi.org/10.1002/jez.1401660205CrossRefPubMedGoogle Scholar
  59. Farley RD (2010) Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Struct Dev 39(5):369–381.  https://doi.org/10.1016/j.asd.2010.04.001CrossRefPubMedGoogle Scholar
  60. Fernández J, Roegiers F, Cantillana V, Sardet C (1998) Formation and localization of cytoplasmic domains in leech and ascidian zygotes. Int J Dev Biol 42(8):1075–1084PubMedGoogle Scholar
  61. Finkel T, Wolf DP (1980) Membrane potential, pH and the activation of surf clam oocytes. Gamete Res 3(3):299–304.  https://doi.org/10.1002/mrd.1120030312CrossRefGoogle Scholar
  62. Fong PP, Wall DM, Ram JL (1993) Characterization of serotonin receptors in the regulation of spawning in the zebra mussel Dreissena polymorpha (Pallas). J Exp Zool 267(5):475–482.  https://doi.org/10.1002/jez.1402670502CrossRefGoogle Scholar
  63. Fong PP, Deguchi R, Kyozuka K (1997) Characterization of serotonin receptor mediating intracellular calcium increase in meiosis-reinitiated oocytes of the bivalve Ruditapes philippinarum from central Japan. J Exp Zool 279(1):89–101.  https://doi.org/10.1002/(SICI)1097-010X(19970901)279:1<89::AID-JEZ9>3.0.CO;2-YCrossRefGoogle Scholar
  64. Franchimont P, Demoulin A, Valcke JC (1988) Endocrine, paracrine, and autocrine control of follicle development. Horm Metab Res 20(4):193–203.  https://doi.org/10.1055/s-2007-1010793CrossRefPubMedGoogle Scholar
  65. Frézal L, Félix MA (2015) C. elegans outside the Petri dish. Elife 4.  https://doi.org/10.7554/eLife.05849
  66. Galindo BE, Moy GW, Swanson WJ, Vacquier VD (2002) Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin. Gene 288(1–2):111–117.  https://doi.org/10.1016/S0378-1119(02)00459-6CrossRefPubMedGoogle Scholar
  67. Galindo BE, Vacquier VD, Swanson WJ (2003) Positive selection in the egg receptor for abalone sperm lysin. Proc Natl Acad Sci U S A 100(8):4639–4643.  https://doi.org/10.1073/pnas.0830022100CrossRefPubMedPubMedCentralGoogle Scholar
  68. Gerhardt CC, Leysen JE, Planta RJ, Vreugdenhil E, Van-Heerikhuizen H (1996) Functional characterization of a 5-HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur J Pharmacol 311(2–3):249–258.  https://doi.org/10.1016/0014-2999(96)00410-4CrossRefPubMedGoogle Scholar
  69. Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV, Passamonti M (2012) De Novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination. Mol Biol Evol 29(2):771–786.  https://doi.org/10.1093/molbev/msr248CrossRefPubMedGoogle Scholar
  70. Gibbons MC, Castagna M (1984) Serotonin as an inducer of spawning in six bivalve species. Aquaculture 40(2):189–191.  https://doi.org/10.1016/0044-8486(84)90356-9CrossRefGoogle Scholar
  71. Giese A, Kanatani H (1987) Maturation and spawning. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, Vol. IX—general aspects: seeking unity in diversity. Blackwell Scientific Publication/Boxwood Press, California, CA, pp 251–329Google Scholar
  72. Gobet I, Durocher Y, Leclerc C, Moreau M, Guerrier P (1994) Reception and transduction of the serotonin signal responsible for meiosis reinitiation in oocytes of the Japanese clam Ruditapes philippinarum. Dev Biol 164(2):540–549.  https://doi.org/10.1006/dbio.1994.1222CrossRefPubMedGoogle Scholar
  73. Goldberg JI, Garofarlo R, Price CJ, Chang JP (1993) Presence and biological activity of a GnRH-like factor in the nervous system of Helisoma trivolvis. J Comp Neurol 336(4):571–582.  https://doi.org/10.1002/cne.903360409CrossRefPubMedGoogle Scholar
  74. Goudeau M (1982) Fertilization in a crab: I. Early events in the ovary, and cytological aspects of the acrosome reaction and gamete contacts. Tissue Cell 14(1):97–111.  https://doi.org/10.1016/0040-8166(82)90010-6CrossRefPubMedGoogle Scholar
  75. Goudeau M (1984) Fertilization in a crab: III. Cytodifferentiation of vesicles enclosing ring-shaped elements involved in the cortical reaction. Gamete Res 9(4):409–424.  https://doi.org/10.1002/mrd.1120090406CrossRefGoogle Scholar
  76. Goudeau M, Becker J (1982) Fertilization in a crab. II. Cytological aspects of the cortical reaction and fertilization envelope elaboration. Tissue Cell 14(2):273–282.  https://doi.org/10.1016/0040-8166(82)90025-8CrossRefPubMedGoogle Scholar
  77. Goudeau H, Goudeau M (1986a) Electrical and morphological responses of the lobster egg to fertilization. Dev Biol 114(2):325–335.  https://doi.org/10.1016/0012-1606(86)90197-1CrossRefGoogle Scholar
  78. Goudeau M, Goudeau H (1986b) The resumption of meiotic maturation of the oocyte of the prawn Palaemon serratus is regulated by an increase in extracellular Mg2+ during spawning. Dev Biol 118(2):361–370.  https://doi.org/10.1016/0012-1606(86)90005-9CrossRefGoogle Scholar
  79. Goudeau H, Goudeau M (1986c) External Mg2+ is required for hyperpolarization to occur in ovulated oocytes of the prawn Palaemon serratus. Dev Biol 118(2):371–378.  https://doi.org/10.1016/0012-1606(86)90006-0CrossRefGoogle Scholar
  80. Goudeau H, Goudeau M (1989a) A long-lasting electrically mediated block, due to the egg membrane hyperpolarization at fertilization, ensures physiological monospermy in eggs of the crab Maia squinado. Dev Biol 133(2):348–360.  https://doi.org/10.1016/0012-1606(89)90039-0CrossRefPubMedGoogle Scholar
  81. Goudeau H, Goudeau M (1989b) Electrical responses to fertilization and spontaneous activation in decapod crustacean eggs: characteristics and role. In: Nuccitelli R, Cherr GN, Clark WH Jr (eds) Mechanisms of egg activation. Plenum Press, New York, pp 201–214Google Scholar
  82. Goudeau M, Goudeau H (1996) External Mg2+ triggers oscillations and a subsequent sustained level of intracellular free Ca2+, correlated with changes in membrane conductance in the oocyte of the prawn Palaemon serratus. Dev Biol 177(1):178–189.  https://doi.org/10.1006/dbio.1996.0154CrossRefPubMedGoogle Scholar
  83. Goudeau H, Goudeau M (1998) Depletion of intracellular Ca2+ stores, mediated by Mg2+-stimulated InsP3 liberation or thapsigargin, induces a capacitative Ca2+ influx in prawn oocytes. Dev Biol 193(2):225–238.  https://doi.org/10.1006/dbio.1997.8799CrossRefPubMedGoogle Scholar
  84. Goudeau M, Goudeau H, Guillaumin D (1991) Extracellular Mg2+ induces a loss of microvilli, membrane retrieval, and the subsequent cortical reaction, in the oocyte of the prawn Palaemon serratus. Dev Biol 148(1):31–50.  https://doi.org/10.1016/0012-1606(91)90315-TCrossRefPubMedGoogle Scholar
  85. Gould M, Stephano JL (1989) How do sperm activate eggs in Urechis (as well as in polychaetes and molluscs)? In: Nuccitelli R, Cherr GN, Clark WH Jr (eds) Mechanisms of egg activation. Plenum Press, New York, pp 201–214CrossRefGoogle Scholar
  86. Gould MC, Stephano JL (1991) Peptides from sperm acrosomal protein that initiate egg development. Dev Biol 146(2):509–518.  https://doi.org/10.1016/0012-1606(91)90252-XCrossRefPubMedGoogle Scholar
  87. Gould MC, Stephano JL (1993) Nuclear and cytoplasmic pH increase at fertilization in Urechis caupo. Dev Biol 159(2):608–617.  https://doi.org/10.1006/dbio.1993.1268CrossRefPubMedGoogle Scholar
  88. Gould MC, Stephano JL (2003) Polyspermy prevention in marine invertebrates. Microsc Res Tech 61(4):379–388.  https://doi.org/10.1002/jemt.10351CrossRefPubMedGoogle Scholar
  89. Gould MC, Stephano JL, Ortíz-Barron BD, Pérez-Quezada I (2001) Maturation and fertilization in Lottia gigantea oocytes: intracellular pH, Ca2+, and electrophysiology. J Exp Zool 290(4):411–420.  https://doi.org/10.1002/jez.1082CrossRefPubMedGoogle Scholar
  90. Goulding MQ, Lambert JD (2016) Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 39:168–174.  https://doi.org/10.1016/j.gde.2016.07.007CrossRefPubMedGoogle Scholar
  91. Gould-Somero M, Jaffe LA, Holland LZ (1979) Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J Cell Biol 82(2):426–440.  https://doi.org/10.1083/jcb.82.2.426CrossRefPubMedGoogle Scholar
  92. Graham JB (1988) Ecological and evolutionary aspects of integumentary respiration: body size, diffusion, and the invertebrata. Am Zool 28(3):1031–1045.  https://doi.org/10.1093/icb/28.3.1031CrossRefGoogle Scholar
  93. Griffin FJ, Clark WH Jr (1990) Induction of acrosomal filament formation in the sperm of Sicyonia ingentis. J Exp Zool 254(3):296–304.  https://doi.org/10.1002/jez.1402540308CrossRefGoogle Scholar
  94. Guerrier P, Brassart M, David C, Moreau M (1986) Sequential control of meiosis reinitiation by pH and Ca2+ in oocytes of the prosobranch mollusk Patella vulgata. Dev Biol 114(2):315–324.  https://doi.org/10.1016/0012-1606(86)90196-XCrossRefGoogle Scholar
  95. Guerrier P, Leclerc-David C, Moreau M (1993) Evidence for the involvement of internal calcium stores during serotonin-induced meiosis reinitiation in oocytes of the bivalve mollusc Ruditapes philippinarum. Dev Biol 159(2):474–484.  https://doi.org/10.1006/dbio.1993.1257CrossRefPubMedGoogle Scholar
  96. Guo C, Han Y, Shi W, Zhao X, Teng S, Xiao G, Yan M, Chai X, Liu G (2017) Ca2+-channel and calmodulin play crucial roles in the fast electrical polyspermy blocking of Tegillarca granosa (Bivalvia: Arcidae). J Moll Stud 83(3):289–294.  https://doi.org/10.1093/mollus/eyx016CrossRefGoogle Scholar
  97. Hejnol A, Martindale MQ (2009) The mouth, the anus, and the blastopore–open questions about questionable openings. In: Telford MJ, Littlewood DTJ (eds) Animal evolution. Genomes, fossils, and trees. Oxford University Press, Oxford, pp 33–40CrossRefGoogle Scholar
  98. Heller J (1993) Hermaphroditism in molluscs. Biol J Linn Soc 48(1):19–42.  https://doi.org/10.1006/bijl.1993.1003CrossRefGoogle Scholar
  99. Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, Lubahn DB (1997) A role for oestrogens in the male reproductive system. Nature 390(6659):509–512.  https://doi.org/10.1038/37352CrossRefPubMedPubMedCentralGoogle Scholar
  100. Hillensjo T, Brannstrom M, Chari S, Daume E, Magnusson C, Tornell J (1985) Oocyte maturation as regulated by follicular factors. Ann N Y Acad Sci 442(1):73–79.  https://doi.org/10.1111/j.1749-6632.1985.tb37506.xCrossRefPubMedGoogle Scholar
  101. Hirai S, Kishimoto T, Kadam AL, Kanatani H, Koide SS (1988) Induction of spawning and oocyte maturation by 5-hydroxytryptamine in the surf clam. J Exp Zool 245(3):318–321.  https://doi.org/10.1002/jez.1402450312CrossRefGoogle Scholar
  102. Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18(7):833–840.  https://doi.org/10.1007/s10577-010-9159-2CrossRefPubMedGoogle Scholar
  103. Hodgson AN, Chia FS (1993) Spermatozoon structure of some North American prosobranchs from the families Lottiidae (Patellogastropoda) and Fissurellidae (Archaeogastropoda). Mar Biol 116(1):97–101.  https://doi.org/10.1007/BF00350736CrossRefGoogle Scholar
  104. Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237(3):527–544.  https://doi.org/10.1002/dvdy.21454CrossRefPubMedGoogle Scholar
  105. Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, Hu X (2011) Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One 6(6):e21560.  https://doi.org/10.1371/journal.pone.0021560CrossRefPubMedPubMedCentralGoogle Scholar
  106. Howell KP, Skipwith A, Galione A, Eckberg WR (2003) Phospholipase C-dependent Ca2+ release by worm and mammal sperm factors. Biochem Biophys Res Commun 307(1):47–51.  https://doi.org/10.1016/S0006-291X(03)01120-3CrossRefPubMedGoogle Scholar
  107. Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3(2):849–915.  https://doi.org/10.1002/cphy.c120003CrossRefPubMedPubMedCentralGoogle Scholar
  108. Humphreys WJ (1962) Electron microscope studies on eggs of Mytilus edulis. J Ultrastruct Res 7:467–487.  https://doi.org/10.1016/S0022-5320(62)90041-2CrossRefPubMedGoogle Scholar
  109. Humphreys WJ (1967) The fine structure of cortical granules in eggs and gastrulae of Mytilus edulis. J Ultrastruct Res 17(3):314–326.  https://doi.org/10.1016/S0022-5320(67)80051-0CrossRefPubMedGoogle Scholar
  110. Ikawa T, Nozoe Y, Yamashita N, Nishimura N, Ohnoki S, Yusa K, Hoshizaki S, Komaba M, Kawakubo A (2018) A study of the distributions of two endangered sea skaters Halobates matsumurai Esaki and Asclepios shiranui (Esaki) (Hemiptera: Gerridae: Halobatinae) with special reference to their strategies to cope with tidal currents. Psyche 2018:3464829.  https://doi.org/10.1155/2018/3464829CrossRefGoogle Scholar
  111. Ikhwanuddin M, Noor-Hidayati AB, Aina-Lyana NMA, Zulaikha H, Muhd-Farouk H, Abol-Munafi AB (2015) In vitro fertilization technique in banana shrimp, Fenneropenaeus merguiensis (De Man, 1888). J Fish Aquat Sci 10(6):512–522.  https://doi.org/10.3923/jfas.2015.512.522CrossRefGoogle Scholar
  112. Ishijima S, Sekiguchi K, Hiramoto Y (1988) Comparative study of the beat patterns of American and Asian horseshoe crab sperm: evidence for a role of the central pair complex in forming planar waveforms in flagella. Cell Motil Cytoskeleton 9(3):264–270.  https://doi.org/10.1002/cm.970090308CrossRefGoogle Scholar
  113. Iwakoshi E, Hisada M, Minakata H (2000) Cardioactive peptides isolated from the brain of a Japanese octopus, Octopus minor. Peptides 21(5):623–630.  https://doi.org/10.1016/S0196-9781(00)00201-1CrossRefPubMedGoogle Scholar
  114. Iwakoshi-Ukena E, Ukena K, Takuwa-Kuroda K, Kanda A, Tsutsui K, Minakata H (2004) Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry. J Comp Neurol 477(3):310–323.  https://doi.org/10.1002/cne.20260CrossRefPubMedGoogle Scholar
  115. Iwao Y, Izaki K (2018) Universality and diversity of a fast, electrical block to polyspermy during fertilization in animals. In: Kobayashi K, Kitano T, Iwao Y, Kondo M (eds) Reproductive and developmental strategies. Springer, Japan, pp 499–533.  https://doi.org/10.1007/978-4-431-56609-0_24CrossRefGoogle Scholar
  116. Iwata Y, Shaw P, Fujiwara E, Shiba K, Kakiuchi Y, Hirohashi N (2011) Why small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours. BMC Evol Biol 11:236.  https://doi.org/10.1186/1471-2148-11-236CrossRefPubMedPubMedCentralGoogle Scholar
  117. Iwata Y, Sakurai Y, Shaw P (2015) Dimorphic sperm-transfer strategies and alternative mating tactics in loliginid squid. J Moll Stud 81(1):147–151.  https://doi.org/10.1093/mollus/eyu072CrossRefGoogle Scholar
  118. Jaffe LA (1983) Fertilization potentials from eggs of the marine worms Chaetopterus and Saccoglossus. In: Moody WJ, Grinnel AD (eds) The physiology of excitable cells. Alan R. Liss, New York, pp 211–218Google Scholar
  119. Jaffe LA (2018) The fast block to polyspermy: new insight into a century-old problem. J Gen Physiol 150(9):1233–1234.  https://doi.org/10.1085/jgp.201812145CrossRefPubMedPubMedCentralGoogle Scholar
  120. Jaffe LA, Gould-Somero M, Holland L (1979) Ionic mechanism of the fertilization potential of the marine worm, Urechis caupo (Echiura). J Gen Physiol 73(4):469–492.  https://doi.org/10.1085/jgp.73.4.469CrossRefPubMedGoogle Scholar
  121. Jakubik B (2012) Life strategies of Viviparidae (Gastropoda: Caenogastropoda: Architaenioglossa) in various aquatic habitats: Viviparus viviparus (Linnaeus, 1758) and V. contectus (Millet, 1813). Folia Malacol 20:145–179.  https://doi.org/10.2478/v10125-012-0013-3CrossRefGoogle Scholar
  122. Johnson JI, Kavanaugh SI, Nguyen C, Tsai P-S (2014) Localization and functional characterization of a novel adipokinetic hormone in the mollusk, Aplysia californica. PLoS One 9(8):e106014.  https://doi.org/10.1371/journal.pone.0106014CrossRefPubMedPubMedCentralGoogle Scholar
  123. Johnston RN, Paul M (1977) Calcium influx following fertilization of Urechis caupo eggs. Dev Biol 57(2):364–374.  https://doi.org/10.1016/0012-1606(77)90221-4CrossRefPubMedGoogle Scholar
  124. Kadam AL, Koide SS (1990) Inhibition of serotonin-induced oocyte maturation by a Spisula factor. J Exp Zool 255(2):239–243.  https://doi.org/10.1002/jez.1402550212CrossRefGoogle Scholar
  125. Kajiwara M, Kuraku S, Kurokawa T, Kato K, Toda S, Hirose H, Takahashi S, Shibata Y, Iguchi T, Matsumoto T, Miyata T, Miura T, Takahashi Y (2006) Tissue preferential expression of estrogen receptor gene in the marine snail, Thais clavigera. Gen Comp Endocrinol 148(3):315–326.  https://doi.org/10.1016/j.ygcen.2006.03.016CrossRefPubMedGoogle Scholar
  126. Kanatani H, Shirai H, Nakanishi K, Kurokawa T (1969) Isolation and identification of meiosis-inducing substance in starfish Asterias amurensis. Nature 221(5177):273–274.  https://doi.org/10.1038/221273a0CrossRefPubMedGoogle Scholar
  127. Kanda A, Takahashi T, Satake H, Minakata H (2006) Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris). Biochem J 395(1):125–135.  https://doi.org/10.1042/BJ20051615CrossRefPubMedPubMedCentralGoogle Scholar
  128. Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, Wolfner MF (2015) Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci U S A 112(3):791–796.  https://doi.org/10.1073/pnas.1420589112CrossRefPubMedPubMedCentralGoogle Scholar
  129. Kashir J, Deguchi R, Jones C, Coward K, Stricker SA (2013) Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 80(10):787–815.  https://doi.org/10.1002/mrd.22222CrossRefPubMedGoogle Scholar
  130. Kato M, Hiruta C, Tochinai S (2016) The behavior of chromosomes during parthenogenetic oogenesis in Marmorkrebs Procambarus fallax f. virginalis. Zoolog Sci 33(4):426–430.  https://doi.org/10.2108/zs160018CrossRefPubMedGoogle Scholar
  131. Keay J, Thornton JW (2009) Hormone-activated estrogen receptors in annelid invertebrates: implications for evolution and endocrine disruption. Endocrinology 150(4):1731–1738.  https://doi.org/10.1210/en.2008-1338CrossRefPubMedGoogle Scholar
  132. Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147(8):3861–3869.  https://doi.org/10.1210/en.2006-0363CrossRefPubMedGoogle Scholar
  133. Kikuchi S, Uki N (1974) Technical study on artificial spawning of abalone, genus Haliotis. II. Effect of irradiated sea water with ultraviolet rays on inducing to spawn. Bull Tohoku Reg Fish Res Lab 33:79–86. (Abstract in English)Google Scholar
  134. Kim YK, Kawazoe I, Jasmani S, Ohira T, Wilder MN, Kaneko T, Aida K (2007) Molecular cloning and characterization of cortical rod protein in the giant freshwater prawn Macrobrachium rosenbergii, a species not forming cortical rod structures in the oocytes. Comp Biochem Physiol B Biochem Mol Biol 148(2):184–191.  https://doi.org/10.1016/j.cbpb.2007.05.008CrossRefPubMedGoogle Scholar
  135. Klaus S, Schubart CD, Brandis D (2009) Ultrastructure of spermatozoa and spermatophores of old world freshwater crabs (Brachyura: Potamoidea: Gecarcinucidae, Potamidae, and Potamonautidae). J Morphol 270(2):175–193.  https://doi.org/10.1002/jmor.10678CrossRefPubMedGoogle Scholar
  136. Klepal W (1990) The fundamentals of insemination in cirripedes. Oceanogr Mar Biol Annu Rev 28:353–379Google Scholar
  137. Klepal W, Barnes H, Barnes M (1979) Studies of the reproduction of cirripedes. VII. The formation and fine structure of the fertilization membrane and egg case. J Exp Mar Biol Ecol 36(1):53–78.  https://doi.org/10.1016/0022-0981(79)90100-XCrossRefGoogle Scholar
  138. Kluge B, Lehmann-Greif M, Fischer A (1995) Long-lasting exocytosis and massive structural reorganisation in the egg periphery during cortical reaction in Platynereis dumerilii (Annelida, Polychaeta). Zygote 3(2):141–156.  https://doi.org/10.1017/S0967199400002513CrossRefPubMedGoogle Scholar
  139. Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477(7365):452–456.  https://doi.org/10.1038/nature10382CrossRefPubMedPubMedCentralGoogle Scholar
  140. Kolbin KG, Kulikova VA (2011) Reproduction and larval development of the limpet Lottia persona (Rathke, 1833) (Gastropoda: Lottiidae). Russ J Mar Biol 37(3):239–242.  https://doi.org/10.1134/S1063074011030072CrossRefGoogle Scholar
  141. Komaru A, Konishi K, Nakayama I, Kobayashi T, Sakai H, Kawamura K (1997) Hermaphroditic freshwater clams in the genus Corbicula produce non-reductional spermatozoa with somatic DNA content. Biol Bull 193(3):320–323.  https://doi.org/10.2307/1542934CrossRefPubMedGoogle Scholar
  142. Komaru A, Kawagishi T, Konishi K (1998) Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Dev Genes Evol 208(1):46–50.  https://doi.org/10.1007/s004270050152CrossRefPubMedGoogle Scholar
  143. Komaru A, Ookubo K, Kiyomoto M (2000) All meiotic chromosomes and both centrosomes at spindle pole in the zygotes discarded as two polar bodies in clam Corbicula leana: unusual polar body formation observed by antitubulin immunofluorescence. Dev Genes Evol 210(5):263–269.  https://doi.org/10.1007/s004270050313CrossRefPubMedGoogle Scholar
  144. Krantic S, Rivailler P (1996) Meiosis reinitiation in molluscan oocytes: a model to study the transduction of extracellular signals. Invert Reprod Dev 30(1–3):55–69.  https://doi.org/10.1080/07924259.1996.9672532CrossRefGoogle Scholar
  145. Krantic S, Dubé F, Quirion R, Guirrier P (1991) Pharmacology of the serotonin-induced meiosis reinitiation in Spisula solidissima oocytes. Dev Biol 146(2):491–498.  https://doi.org/10.1016/0012-1606(91)90250-7CrossRefPubMedGoogle Scholar
  146. Krantic S, Dubé F, Guerrier P (1993a) Evidence for a new subtype of serotonin receptor in oocytes of the surf clam Spisula solidissima. Gen Comp Endocrinol 90(1):125–131.  https://doi.org/10.1006/gcen.1993.1067CrossRefPubMedGoogle Scholar
  147. Krantic S, Guerrier P, Dubé F (1993b) Meiosis reinitiation in surf clam oocytes is mediated via a 5-hydroxytryptamine5 serotonin membrane receptor and a vitelline envelope-associated high affinity binding site. J Biol Chem 268(11):7983–7989PubMedGoogle Scholar
  148. Kresge N, Vacquier VD, Stout CD (2001) Abalone lysin: the dissolving and evolving sperm protein. Bioessays 23(1):95–103.  https://doi.org/10.1002/1521-1878(200101)23:1<95::AID-BIES1012>3.0.CO;2-CCrossRefPubMedGoogle Scholar
  149. Kruevaisayawan H, Vanichviriyakit R, Weerachatyanukul W, Iamsaard S, Withyachumnarnkul B, Basak A, Tanphaichitr N, Sobhon P (2008) Induction of the acrosome reaction in black tiger shrimp (Penaeus monodon) requires sperm trypsin-like enzyme activity. Biol Reprod 79(1):134–141.  https://doi.org/10.1095/biolreprod.107.066316CrossRefPubMedGoogle Scholar
  150. Kubo M, Nakashima S, Tsukahara J, Ishikawa M (1979) Spermiogenesis in barnalces with special reference to organization of the accessory body. Dev Growth Differ 21(5):445–456.  https://doi.org/10.1111/j.1440-169X.1979.00445.xCrossRefGoogle Scholar
  151. Kutschera U, Elliott JM (2010) Charles Darwin’s observations on the behaviour of earthworms and the evolutionary history of a giant endemic species from Germany, Lumbricus badensis (Oligochaeta: Lumbricidae). Appl Environ Soil Sci 2010:823047.  https://doi.org/10.1155/2010/823047CrossRefGoogle Scholar
  152. Kyozuka K, Osanai K (1994) Functions of the egg envelope of Mytilus edulis during fertilization. Bull Mar Biol Stn Asamushi Tohoku Univ 19(2):79–92Google Scholar
  153. Kyozuka K, Deguchi R, Yoshida N, Yamashita M (1997) Change in intracellular Ca2+ is not involved in serotonin-induced meiosis reinitiation from the first prophase in oocytes of the marine bivalve Crassostrea gigas. Dev Biol 182(1):33–41.  https://doi.org/10.1006/dbio.1996.8470CrossRefPubMedGoogle Scholar
  154. Lafont R, Mathieu M (2007) Steroids in aquatic invertebrates. Ecotoxicology 16(1):109–130.  https://doi.org/10.1007/s10646-006-0113-1CrossRefPubMedGoogle Scholar
  155. Le Gall S, Feral C, Lengronne C, Porchet M (1987) Partial purification of the endocrine mitogenic factor in the mollusk Crepidula fornicata L. Comp Biochem Physiol B 86(2):393–396.  https://doi.org/10.1016/0305-0491(87)90311-7CrossRefGoogle Scholar
  156. Leclerc C, Guerrier P, Moreau M (2000) Role of dihydropyridine-sensitive calcium channels in meiosis and fertilization in the bivalve molluscs Ruditapes philippinarum and Crassostrea gigas. Biol Cell 92(3–4):285–299.  https://doi.org/10.1016/S0248-4900(00)01069-8CrossRefPubMedGoogle Scholar
  157. Lewis CA (1975) Development of the gooseneck barnacle Pollicipes polymerus (Cirripedia: Lepadomorpha): fertilization through settlement. Mar Biol 32(2):141–153.  https://doi.org/10.1007/BF00388507CrossRefGoogle Scholar
  158. Lewis CA, Leighton DL, Vacquier VD (1980) Morphology of abalone spermatozoa before and after the acrosome reaction. J Ultrastruct Res 72(1):39–46.  https://doi.org/10.1016/S0022-5320(80)90133-1CrossRefPubMedGoogle Scholar
  159. Lewis CA, Talbot CF, Vacquier VD (1982) A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism. Dev Biol 92(1):227–239.  https://doi.org/10.1016/0012-1606(82)90167-1CrossRefPubMedGoogle Scholar
  160. Li XC, Giot JF, Kuhl D, Hen R, Kandel ER (1995) Cloning and characterization of two related serotonergic receptors from the brain and the reproductive system of Aplysia that activate phospholipase C. J Neurosci 15(11):7585–7591.  https://doi.org/10.1523/JNEUROSCI.15-11-07585.1995CrossRefPubMedPubMedCentralGoogle Scholar
  161. Li Q, Osada M, Suzuki T, Mori K (1998) Changes in vitellin during oogenesis and effect of estradiol-17β on vitellogenesis in the Pacific oyster Crassostrea gigas. Invert Reprod Dev 33(1):87–93.  https://doi.org/10.1080/07924259.1998.9652345CrossRefGoogle Scholar
  162. Lillie FR (1911) Studies of fertilization in Nereis. I. The cortical changes in the egg. II. Partial fertilization. J Morphol 22(2):361–393.  https://doi.org/10.1002/jmor.1050220208CrossRefGoogle Scholar
  163. Lindsay LL, Clark WH Jr (1994) Signal transduction during shrimp oocyte activation by extracellular Mg2+: roles of inositol 1,4,5- trisphosphate, tyrosine kinases and G-proteins. Development 120(12):3463–3472Google Scholar
  164. Lindsay LL, Hertzler PL, Clark WH Jr (1992) Extracellular Mg2+ induces an intracellular Ca2+ wave during oocyte activation in the marine shrimp Sicyonia ingentis. Dev Biol 152(1):94–102.  https://doi.org/10.1016/0012-1606(92)90159-ECrossRefPubMedGoogle Scholar
  165. Liu M (2011) The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol 9:149.  https://doi.org/10.1186/1477-7827-9-149CrossRefPubMedPubMedCentralGoogle Scholar
  166. Longo FJ (1976) Ultrastructural aspects of fertilization in spiralian eggs. Am Zool 16(3):375–394.  https://doi.org/10.1093/icb/16.3.375CrossRefGoogle Scholar
  167. Longo FJ (1983) Meiotic maturation and fertilization. In: Wilbur KM (ed) The mollusca, vol 3. Academic Press, New York, pp 49–89Google Scholar
  168. Longo FJ, Anderson E (1970) An ultrastructual analysis of fertilization in the surf clam, Spisula solidissima. I. Polar body formation and development of the female pronucleus. J Ultrastruct Res 33(5):495–514.  https://doi.org/10.1016/S0022-5320(70)90177-2CrossRefPubMedGoogle Scholar
  169. Longo FJ, Dornfeld EJ (1967) The fine structure of spermatid differentiation in the mussel, Mytilus edulis. J Ultrastruct Res 20(5):462–480.  https://doi.org/10.1016/S0022-5320(67)80113-8CrossRefPubMedGoogle Scholar
  170. Loumaye E, Thorner J, Catt KJ (1982) Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone? Science 218(4579):1323–1325.  https://doi.org/10.1126/science.6293058CrossRefPubMedGoogle Scholar
  171. Lubet P, Mathieu M (1982) The action of internal factors on gametogenesis in pelecypod molluscs. Malacologia 22(1–2):131–136Google Scholar
  172. Lynn JW, Clark WH Jr (1983a) A morphological examination of sperm-egg interaction in the freshwater prawn, Macrobrachium rosenbergii. Biol Bull 164(3):446–458.  https://doi.org/10.2307/1541254CrossRefGoogle Scholar
  173. Lynn JW, Clark WH Jr (1983b) The fine structure of the mature sperm of the freshwater prawn, Macrobrachium rosenbergii. Biol Bull 164(3):459–470.  https://doi.org/10.2307/1541255CrossRefGoogle Scholar
  174. Maccari M, Amat F, Hontoria F, Gómez A (2014) Laboratory generation of new parthenogenetic lineages supports contagious parthenogenesis in Artemia. Peer J 2:e439.  https://doi.org/10.7717/peerj.439CrossRefPubMedGoogle Scholar
  175. Maina JN (2002) Structure, function and evolution of the gas exchangers: comparative perspectives. J Anat 201(4):281–304.  https://doi.org/10.1046/j.1469-7580.2002.00099.xCrossRefPubMedPubMedCentralGoogle Scholar
  176. Markow TA (2015) The secret lives of Drosophila flies. Elife 4.  https://doi.org/10.7554/eLife.06793
  177. Marotta R, Crottini A, Raimondi E, Fondello C, Ferraguti M (2014) Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization. BMC Evol Biol 14(1):73.  https://doi.org/10.1186/1471-2148-14-73CrossRefPubMedPubMedCentralGoogle Scholar
  178. Martínez G, Saleh FL, Mettifogo L, Campos E, Inestrosa N (1996) Monoamines and the release of gamets by the scallop Argopecten purpuratus. J Exp Zool 274(6):365–372.  https://doi.org/10.1002/(SICI)1097-010X(19960415)274:6<365::AID-JEZ5>3.0.CO;2-MCrossRefGoogle Scholar
  179. Masui Y (1985) Meiotic arrest in animal oocytes. In: Metz CB, Monroy A (eds) Biology of fertilization, vol 1. Academic Press, New York, pp 189–219CrossRefGoogle Scholar
  180. Mathieu M (1985) Partial characterization of aspartate transcarbamylase from the mantle of the mussel Mytilus edulis. Comp Biochem Physiol B 82(4):667–674.  https://doi.org/10.1016/0305-0491(85)90505-XCrossRefPubMedGoogle Scholar
  181. Mathieu M (1987) Utilization of aspartate transcarbamylase activity in the study of neuroendocrine control of gametogenesis in Mytilus edulis. J Exp Zool 241(2):247–252.  https://doi.org/10.1002/jez.1402410211CrossRefGoogle Scholar
  182. Mathieu M, Lubet P (1980) Analyse expérimentale en cultures d’organes de l’action des ganglions nerveux sur la gonade adulte de la moule. Bull Soc Zool Fr 105:149–153Google Scholar
  183. Mathieu M, Lenoir F, Robbins I (1988) A gonial mitosis-stimulating factor in cerebral ganglia and hemolymph of the marine mussel Mytilus edulis L. Gen Comp Endocrinol 72(2):257–263.  https://doi.org/10.1016/0016-6480(88)90208-0CrossRefPubMedGoogle Scholar
  184. Matsumoto T, Osada M, Osawa Y, Mori K (1997) Gonadal estrogen profile and immunohistochemical localization of steroidogenic enzymes in the oyster and scallop during sexual maturation. Comp Biochem Physiol B 118(4):811–817.  https://doi.org/10.1016/S0305-0491(97)00233-2CrossRefGoogle Scholar
  185. Matsumoto T, Nakamura AM, Mori K, Kayano T (2003) Molecular characterization of a cDNA encoding putative vitellogenin from the Pacific oyster Crassostrea gigas. Zoolog Sci 20(1):37–42.  https://doi.org/10.2108/zsj.20.37CrossRefPubMedGoogle Scholar
  186. Matsumoto T, Nakamura AM, Mori K, Akiyama I, Hirose H, Takahashi Y (2007) Oyster estrogen receptor: cDNA cloning and immunolocalization. Gen Comp Endocrinol 151(2):195–201.  https://doi.org/10.1016/j.ygcen.2007.01.016CrossRefPubMedGoogle Scholar
  187. Matsumoto T, Yamano K, Kitamura M, Hara A (2008) Ovarian follicle cells are the site of vitellogenin synthesis in the Pacific abalone Haliotis discus hannai. Comp Biochem Physiol A 149(3):293–298.  https://doi.org/10.1016/j.cbpa.2008.01.003CrossRefGoogle Scholar
  188. Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M (2013) Reproduction-related genes in the pearl oyster genome. Zoolog Sci 30(10):826–850.  https://doi.org/10.2108/zsj.30.826CrossRefPubMedGoogle Scholar
  189. Matsutani T, Nomura T (1982) Induction of spawning by serotonin in the scallop, Patinopecten yessoensis (Jay). Mar Biol Lett 3:353–358Google Scholar
  190. Matsutani T, Nomura T (1986a) Serotonin-like immunoreactivity in the central nervous system and gonad of the scallop, Patinopecten yessoensis. Cell Tissue Res 244(3):515–517.  https://doi.org/10.1007/BF00212528CrossRefGoogle Scholar
  191. Matsutani T, Nomura T (1986b) Pharmacological observations on the mechanism of spawning in the scallop Patinopecten yessoensis. Bull Jpn Soc Sci Fish 52(9):1589–1594.  https://doi.org/10.2331/suisan.52.1589CrossRefGoogle Scholar
  192. Matsutani T, Nomura T (1987) In vitro effects of serotonin and prostaglandins on release of eggs from the ovary of the scallop, Patinopecten yessoyensis. Gen Comp Endocrinol 67(1):111–118.  https://doi.org/10.1016/0016-6480(87)90210-3CrossRefPubMedGoogle Scholar
  193. Mattei JH, Beekey MA, Rudman A, Woronik A (2010) Reproductive behavior in horseshoe crabs: does density matter? Curr Zool 56(5):634–642CrossRefGoogle Scholar
  194. Metz EC, Robles-Sikisaka R, Vacquier VD (1998) Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc Natl Acad Sci U S A 95(18):10676–10681CrossRefGoogle Scholar
  195. Miranda NA, Perissinotto R, Appleton CC (2011) Population structure of an invasive parthenogenetic gastropod in coastal lakes and estuaries of northern KwaZulu-Natal, South Africa. PLoS One 6(8):e24337.  https://doi.org/10.1371/journal.pone.0024337CrossRefPubMedPubMedCentralGoogle Scholar
  196. Miura T, Miura C (2001) Japanese eel: a model for analysis of spermatogenesis. Zoolog Sci 18(8):1055–1063.  https://doi.org/10.2108/zsj.18.1055CrossRefGoogle Scholar
  197. Miyazaki S (2006) Thirty years of calcium signals at fertilization. Semin Cell Dev Biol 17(2):233–243.  https://doi.org/10.1016/j.semcdb.2006.02.007CrossRefPubMedGoogle Scholar
  198. Mozingo NM, Vacquier VD, Chandler DE (1995) Structural features of the abalone egg extracellular matrix and its role in gamete interaction during fertilization. Mol Reprod Dev 41(4):493–502.  https://doi.org/10.1002/mrd.1080410412CrossRefPubMedGoogle Scholar
  199. Mustonen M, Haimi J, Kesäniemi J, Högmander H, Knott KE (2017) Variation in gene expression within clones of the earthworm Dendrobaena octaedra. PLoS One 12(4):e0174960.  https://doi.org/10.1371/journal.pone.0174960CrossRefPubMedPubMedCentralGoogle Scholar
  200. Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M (2015a) In vivo administration of scallop GnRH-like peptide influences on gonad development in the Yesso scallop, Patinopecten yessoensis. PLoS One 10(6):e0129571.  https://doi.org/10.1371/journal.pone.0129571CrossRefPubMedPubMedCentralGoogle Scholar
  201. Nagasawa K, Treen N, Kondo R, Otoki Y, Itoh N, Rotchell JM, Osada M (2015b) Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 564(2):153–159.  https://doi.org/10.1016/j.gene.2015.03.073CrossRefPubMedGoogle Scholar
  202. Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M (2015c) Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 71:202–210.  https://doi.org/10.1016/j.peptides.2015.07.022CrossRefPubMedGoogle Scholar
  203. Nagasawa K, Muroi M, Thitiphuree T, Minegishi Y, Itoh N, Osada M (2017) Cloning of invertebrate gonadotropin-releasing hormone receptor (GnRHR)-like gene in Yesso scallop, Patinopecten yessoensis. Agric Gene 3:46–56.  https://doi.org/10.1016/j.aggene.2016.11.005CrossRefGoogle Scholar
  204. Nakamura S, Osada M, Kijima A (2007) Involvement of GnRH neuron in the spermatogonial proliferation of the scallop, Patinopecten yessoensiss. Mol Reprod Dev 74(1):108–115.  https://doi.org/10.1002/mrd.20544CrossRefPubMedGoogle Scholar
  205. Nakano T, Kyozuka K (2015) Soluble sperm extract specifically recapitulates the initial phase of the Ca2+ response in the fertilized oocyte of P. occelata following a G-protein/PLCβ signaling pathway. Zygote 23(6):821–835.  https://doi.org/10.1017/S0967199414000501CrossRefPubMedGoogle Scholar
  206. Nakano T, Kyozuka K, Deguchi R (2008) Novel two-step Ca2+ increase and its mechanisms and functions at fertilization in oocytes of the annelidan worm Pseudopotamilla occelata. Dev Growth Differ 50(5):365–379.  https://doi.org/10.1111/j.1440-169X.2008.01022.xCrossRefPubMedGoogle Scholar
  207. Nakano T, Deguchi R, Kyozuka K (2014) Intracellular calcium signaling in the fertilized eggs of Annelida. Biochem Biophys Res Commun 450(3):1188–1194.  https://doi.org/10.1016/j.bbrc.2014.06.056CrossRefPubMedGoogle Scholar
  208. Néant I, Guerrier P (1988) Meiosis reinitiation in the mollusc Patella vulgata. Regulation of MPF, CSF, and chromosome condensation activity by intracellular pH, protein synthesis and phosphorylation. Development 102(3):505–516Google Scholar
  209. Ngernsoungnern P, Ngernsoungnern A, Chaiseha Y, Sretarugsa P (2012) Role of vitelline envelope during fertilization in the black tiger shrimp, Penaeus monodon. Acta Histochem 114(7):659–664.  https://doi.org/10.1016/j.acthis.2011.11.013CrossRefPubMedGoogle Scholar
  210. Niijima L, Dan J (1965) The acrosome reaction in Mytilus edulis. I. Fine structure of the intact acrosome. J Cell Biol 25:243–248.  https://doi.org/10.1083/jcb.25.2.243CrossRefPubMedPubMedCentralGoogle Scholar
  211. Niksirat H, Kouba A, Kozák P (2015) Ultrastructure of egg activation and cortical reaction in the noble crayfish Astacus astacus. Micron 68:115–121.  https://doi.org/10.1016/j.micron.2014.09.010CrossRefPubMedGoogle Scholar
  212. Novikoff AB (1939) Surface changes in unfertilized and fertilized eggs of Sabellaria vulgaris. J Exp Zool 82(2):217–237.  https://doi.org/10.1002/jez.1400820204CrossRefGoogle Scholar
  213. Osada M, Nomura T (1990) The levels of prostaglandins associated with the reproductive cycle of the scallop, Patinopecten yessoensis. Prostaglandins 40(3):229–239.  https://doi.org/10.1016/0090-6980(90)90011-JCrossRefPubMedGoogle Scholar
  214. Osada M, Treen N (2013) Molluscan GnRH associated with reproduction. Gen Comp Endocrinol 181:254–258.  https://doi.org/10.1016/j.ygcen.2012.09.002CrossRefPubMedGoogle Scholar
  215. Osada M, Matsutani T, Nomura T (1987) Implication of catecholamines during spawning in marine bivalve molluscs. Int J Invert Reprod Dev 12(3):241–252.  https://doi.org/10.1080/01688170.1987.10510324CrossRefGoogle Scholar
  216. Osada M, Nishikawa M, Nomura T (1989) Involvement of prostaglandins in the spawning of the scallop Patinopecten yessoensis. Comp Biochem Physiol C 94(2):595–601.  https://doi.org/10.1016/0742-8413(89)90119-9CrossRefGoogle Scholar
  217. Osada M, Mori K, Nomura T (1992a) In vitro effects of estrogen and serotonin on release of eggs from the ovary of the scallop. Nippon Suisan Gakkaishi 58(2):223–227.  https://doi.org/10.2331/suisan.58.223CrossRefGoogle Scholar
  218. Osada M, Unuma T, Mori K (1992b) Purification and characterization of a yolk protein from the scallop ovary. Nippon Suisan Gakkaishi 58(12):2283–2289.  https://doi.org/10.2331/suisan.58.2283CrossRefGoogle Scholar
  219. Osada M, Nakata A, Matsumuto T, Mori K (1998) Pharmacological characterization of serotonin receptor in the oocyte membrane of bivalve molluscs and its formation during oogenesis. J Exp Zool 281(2):124–131.  https://doi.org/10.1002/(SICI)1097-010X(19980601)281:2<124::AID-JEZ6>3.0.CO;2-QCrossRefGoogle Scholar
  220. Osada M, Takamura T, Sato H, Mori K (2003) Vitellogenin synthesis in the ovary of scallop, Patinopecten yessoensis: control by estradiol-17 beta and the central nervous system. J Exp Zool 299A(2):172–179.  https://doi.org/10.1002/jez.a.10276CrossRefGoogle Scholar
  221. Osada M, Harata M, Kishida M, Kijima A (2004a) Molecular cloning and expression analysis of vitellogenin in scallop, Patinopecten yessoensis (Bivalvia, Mollusca). Mol Reprod Dev 67(3):273–281.  https://doi.org/10.1002/mrd.20020CrossRefPubMedGoogle Scholar
  222. Osada M, Tawarayama H, Mori K (2004b) Estrogen synthesis in relation to gonadal development of Japanese scallop, Patinopecten yessoensis: gonadal profile and immunolocalization of P450 aromatase and estrogen. Comp Biochem Physiol B 139(1):123–128.  https://doi.org/10.1016/j.cbpc.2004.07.002CrossRefPubMedGoogle Scholar
  223. Osada M, Nakamura S, Kijima A (2007) Quantitative analysis of the pattern of gonial proliferation during sexual maturation in the Japanese scallop Patinopecten yessoensis. Fish Sci 73(6):1318–1324.  https://doi.org/10.1111/j.1444-2906.2007.01470.xCrossRefGoogle Scholar
  224. Osanai K (1975) Seasonal gonad development and sex alteration in the scallop, Patinopecten yessoensis. Bull Mar Biol St Asamushi Tohoku Univ 15(2):81–88Google Scholar
  225. Osanai K (1985) In vitro induction of germinal vesicle breakdown in oyster oocytes. Bull Mar Biol Stn Asamushi Tohoku Univ 18(1):1–9Google Scholar
  226. Osanai K, Kuraishi R (1988) Response of oocytes to meiosis-inducing agents in pelecypods. Bull Mar Biol Stn Asamushi Tohoku Univ 18(2):45–56Google Scholar
  227. Park KI, Choi KS (2004) Application of enzyme-linked immunosorbent assay for studying of reproduction in the Manila clam Ruditapes philippinarum (Mollusca: Bivalvia): I. Quantifying eggs. Aquaculture 241(1–4):667–687.  https://doi.org/10.1016/j.aquaculture.2004.08.017CrossRefGoogle Scholar
  228. Pauletto M, Milan M, de Sousa JT, Huvet A, Joaquim S, Matias D, Leitão A, Patarnello T, Bargelloni L (2014) Insights into molecular features of Venerupis decussata oocytes: a microarray-based study. PLoS One 9(12):e113925.  https://doi.org/10.1371/journal.pone.0113925CrossRefPubMedPubMedCentralGoogle Scholar
  229. Pazos AJ, Mathieu M (1999) Effects of five natural gonadotropin-releasing hormones on cell suspensions of marine bivalve gonad: stimulation of gonial DNA synthesis. Gen Comp Endocrinol 113(1):112–120.  https://doi.org/10.1006/gcen.1998.7186CrossRefPubMedGoogle Scholar
  230. Pierantoni R, Cobellis G, Meccariello R, Cacciola G, Chianese R, Chioccarelli T, Fasano S (2009) Testicular gonadotropin-releasing hormone activity, progression of spermatogenesis, and sperm transport in vertebrates. Ann N Y Acad Sci 1163:279–291.  https://doi.org/10.1111/j.1749-6632.2008.03617.xCrossRefPubMedGoogle Scholar
  231. Pillai MC, Clark WH Jr (1987) Oocyte activation in the marine shrimp, Sicyonia ingentis. J Exp Zool 244(2):325–329.  https://doi.org/10.1002/jez.1402440217CrossRefGoogle Scholar
  232. Pipe RK (1987a) Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Mar Biol 95(3):405–414.  https://doi.org/10.1007/BF00409571CrossRefGoogle Scholar
  233. Pipe RK (1987b) Ultrastructural and cytochemical study on interactions between nutrient storage cells and gametogenesis in the mussel Mytilus edulis. Mar Biol 96(4):519–528.  https://doi.org/10.1007/BF00397969CrossRefGoogle Scholar
  234. Polzonetti-Magni AM, Mosconi G, Soverchia L, Kikuyama S, Carnevali O (2004) Multihormonal control of vitellogenesis in lower vertebrates. Int Rev Cytol 239:1–45.  https://doi.org/10.1016/S0074-7696(04)39001-7CrossRefPubMedGoogle Scholar
  235. Pongtippatee P, Luppanakane R, Thaweethamsewee P, Kirirat P, Weerachatyanukul W, Withyachumnarnkul B (2010) Delay of the egg activation process in the black tiger shrimp Penaeus monodon by manipulation of magnesium levels in spawning water. Aquacult Res 41(2):227–232.  https://doi.org/10.1111/j.1365-2109.2009.02322.xCrossRefGoogle Scholar
  236. Pongtippatee-Taweepreda P, Chavadej J, Plodpai P, Pratoomchart B, Sobhon P, Weerachatyanukul W, Withyachumnarnkul B (2004) Egg activation in the black tiger shrimp Penaeus monodon. Aquaculture 234(1–4):183–198.  https://doi.org/10.1016/j.aquaculture.2003.10.036CrossRefGoogle Scholar
  237. Portillo-López A, Gould MC, Stephano JL (2003) MAPK is involved in metaphase I arrest in oyster and mussel oocytes. Biol Cell 95(5):275–282.  https://doi.org/10.1016/S0248-4900(03)00054-6CrossRefPubMedGoogle Scholar
  238. Prevedelli D, Simonini R (2003) Life cycles in brackish habitats: adaptive strategies of some polychaetes from the Venice lagoon. Oceanol Acta 26(1):77–84.  https://doi.org/10.1016/S0399-1784(02)01232-XCrossRefGoogle Scholar
  239. Raj I, Sadat Al Hosseini H, Dioguardi E, Nishimura K, Han L, Villa A, de Sanctis D, Jovine L (2017) Structural basis of egg coat-sperm recognition at fertilization. Cell 169(7):1315–1326.  https://doi.org/10.1016/j.cell.2017.05.033CrossRefPubMedPubMedCentralGoogle Scholar
  240. Ram JL, Fei X, Danaher SM, Lu S, Breithaupt T, Hardege JD (2008) Finding females: pheromone-guided reproductive tracking behavior by male Nereis succinea in the marine environment. J Exp Biol 211(5):757–765.  https://doi.org/10.1242/jeb.012773CrossRefPubMedGoogle Scholar
  241. Rebhun LI (1962) Electron microscope studies on the vitelline membrane of the surf clam, Spisula solidissima. J Ultrastruct Res 6(1):107–122.  https://doi.org/10.1016/S0022-5320(62)90064-3CrossRefPubMedGoogle Scholar
  242. Reis-Henriques MA, Le Guellec D, Remy-Martin JP, Adessi GL (1990) Studies of endogenous steroids from the marine mollusc Mytilus edulis L. By gas chromatography and mass spectrometry. Comp Biochem Physiol B 95(2):303–309.  https://doi.org/10.1016/0305-0491(90)90080-DCrossRefGoogle Scholar
  243. Roch GJ, Busby ER, Sherwood NM (2011) Evolution of GnRH: diving deeper. Gen Comp Endocrinol 171(1):1–16.  https://doi.org/10.1016/j.ygcen.2010.12.014CrossRefPubMedGoogle Scholar
  244. Rodet F, Lelong C, Dubos M-P, Costil K, Favrel P (2005) Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochim Biophys Acta 1730(3):187–195.  https://doi.org/10.1016/j.bbaexp.2005.05.012CrossRefPubMedGoogle Scholar
  245. Rodet F, Lelong C, Dubos M-P (2008) Favrel P (2008) Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin-releasing hormone receptor orthologues and their variants in the bivalve mollusc Crassostrea gigas. Gene 414(1–2):1–9.  https://doi.org/10.1016/j.gene.2008.01.022CrossRefPubMedGoogle Scholar
  246. Rojas E, Alfaro J (2007) In vitro manipulation of egg activation in the open thelycum shrimp Litopenaeus. Aquaculture 264(1–4):469–474.  https://doi.org/10.1016/j.aquaculture.2006.12.025CrossRefGoogle Scholar
  247. Sakai Y, Shiroya Y, Haino-Fukushima K (1982) Fine structural changes in the acrosome reaction of the Japanese abalone, Haliotis disus. Dev Growth Differ 24(6):531–542.  https://doi.org/10.1111/j.1440-169X.1982.00531.xCrossRefGoogle Scholar
  248. Samadi S, Mavárez J, Pointier JP, Delay B, Jarne P (1999) Microsatellite and morphological analysis of population structure in the parthenogenetic freshwater snail Melanoides tuberculata: insights into the creation of clonal variability. Mol Ecol 8(7):1141–1153.  https://doi.org/10.1046/j.1365-294x.1999.00671.xCrossRefGoogle Scholar
  249. Sastry AN (1979) Pelecypoda (exclusive ostreidae). In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, vol 5. Academic Press, New York, pp 113–292CrossRefGoogle Scholar
  250. Sato E, Koide SS (1984) A factor from bovine granulose cells preventing oocyte maturation. Differentiation 26(1):59–62.  https://doi.org/10.1111/j.1432-0436.1984.tb01374.xCrossRefPubMedGoogle Scholar
  251. Sato M, Osanai K (1983) Sperm reception by an egg microvillus in the polychaete, Tylorrhynchus heterochaetus. J Exp Zool 227(3):459–469.  https://doi.org/10.1002/jez.1402270315CrossRefGoogle Scholar
  252. Sato M, Osanai K (1986) Morphological identification of sperm receptors above egg microvilli in the polychaete, Neanthes japonica. Dev Biol 113(2):263–270.  https://doi.org/10.1016/0012-1606(86)90161-2CrossRefPubMedGoogle Scholar
  253. Sato E, Wood HN, Lynn DG, Sahni MK, Koide SS (1985) Meiotic arrest in oocytes regulated by a Spisula factor. Biol Bull 169(2):334–341.  https://doi.org/10.2307/1541486CrossRefPubMedGoogle Scholar
  254. Sato E, Toyoda Y, Segal SJ, Koide SS (1992) Oocyte membrane components preventing trypsin-induced germinal vesicle breakdown in surf clam oocyte. J Reprod Dev 38(4):309–315.  https://doi.org/10.1262/jrd.38.309CrossRefGoogle Scholar
  255. Scott AP (2012) Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 77(13):1450–1468.  https://doi.org/10.1016/j.steroids.2012.08.009CrossRefPubMedGoogle Scholar
  256. Scott AP (2013) Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids 78(2):268–281.  https://doi.org/10.1016/j.steroids.2012.11.006CrossRefPubMedGoogle Scholar
  257. Sedano FJ, Rodríguez JL, Ruiz C, García-Martín LO, Sánchez JL (1995) Biochemical composition and fertilization in the eggs of Mytilus galloprovincialis (Lamarck). J Exp Mar Biol Ecol 192(1):75–85.  https://doi.org/10.1016/0022-0981(95)00062-VCrossRefGoogle Scholar
  258. Shen HP, Yu HT, Chen JH (2012) Parthenogenesis in two Taiwanese mountain earthworms Amynthas catenus Tsai et al., 2001 and Amynthas hohuanmontis Tsai et al., 2002 (Oligochaeta, Megascolecidae) revealed by AFLP. Eur J Soil Biol 51:30–36.  https://doi.org/10.1016/j.ejsobi.2012.03.007CrossRefGoogle Scholar
  259. Shi W, Han Y, Guo C, Zhao X, Liu S, Su W, Wang Y, Zha S, Chai X, Liu G (2017) Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa. Mar Environ Res 130:106–112.  https://doi.org/10.1016/j.marenvres.2017.07.016CrossRefPubMedGoogle Scholar
  260. Shin KS, Kwon HJ, Kim WJ (2005) Attribution of cortical granules to formation of fertilization envelopes and polyspermy block in Urechis unicinctus. Integr Biosci 9(2):57–64.  https://doi.org/10.1080/17386357.2005.9647252CrossRefGoogle Scholar
  261. Simeó CG, Kurtz K, Rotllant G, Chiva M, Ribes E (2010) Sperm ultrastructure of the spider crab Maja brachydactyla (Decapoda: Brachyura). J Morphol 271(4):407–417.  https://doi.org/10.1002/jmor.10806CrossRefPubMedGoogle Scholar
  262. Simonini R, Molinari F, Pagliai AM, Ansaloni I, Prevedelli D (2003) Karyotype and sex determination in Dinophilus gyrociliatus (Polychaeta: Dinophilidae). Mar Biol 142(3):441–445.  https://doi.org/10.1007/s00227-002-0979-2CrossRefGoogle Scholar
  263. Singaravelu G, Singson A (2013) Calcium signaling surrounding fertilization in the nematode Caenorhabditis elegans. Cell Calcium 53(1):2–9.  https://doi.org/10.1016/j.ceca.2012.11.009CrossRefPubMedGoogle Scholar
  264. Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480(7377):364–367.  https://doi.org/10.1038/nature10526CrossRefPubMedGoogle Scholar
  265. Stephano JL (1992) A study of polyspermy in abalone. In: Shepherd SA, Tegner MJ, Guzman del Proo SA (eds) Abalone of the world: biology, fisheries and culture. Fishing News Books, Oxford, pp 518–526Google Scholar
  266. Stephano JL, Gould MC (1997a) The intracellular calcium increase at fertilization in Urechis caupo oocytes: activation without waves. Dev Biol 191(1):53–68.  https://doi.org/10.1006/dbio.1997.8709CrossRefPubMedGoogle Scholar
  267. Stephano JL, Gould MC (1997b) Parthenogenesis in Urechis caupo (Echiura). II. Role of intracellular pH in parthenogenesis induction. Dev Growth Differ 39(1):99–104.  https://doi.org/10.1046/j.1440-169X.1997.00010.xCrossRefPubMedGoogle Scholar
  268. Storch V, Alberti G (1978) Ultrastructural observations on the gills of polychaetes. Helgoland Wiss Meer 31(1–2):169–179.  https://doi.org/10.1007/BF02296995CrossRefGoogle Scholar
  269. Stricker SA (1999) Comparative biology of calcium signalling during fertilization and egg activation in animals. Dev Biol 211(2):157–176.  https://doi.org/10.1006/dbio.1999.9340CrossRefPubMedGoogle Scholar
  270. Struck TH, Golombek A, Weigert A, Franke FA, Westheide W, Purschke G, Bleidorn C, Halanych KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol 25(15):1993–1999.  https://doi.org/10.1016/j.cub.2015.06.007CrossRefPubMedGoogle Scholar
  271. Sugamori KS, Sunahara RK, Guan HC, Bulloch AG, Tensen CP, Seeman P, Niznik HB, Van Tol HH (1993) Serotonin receptor cDNA, cloned from Lymnaea stagnalis. Proc Natl Acad Sci U S A 90(1):11–15.  https://doi.org/10.1073/pnas.90.1.11CrossRefPubMedPubMedCentralGoogle Scholar
  272. Sun B, Tsai P-S (2011) A gonadotropin-releasing hormone-like molecule modulates the activity of diverse central neurons in a gastropod mollusk, Aplysia californica. Front Endocrinol 2:36.  https://doi.org/10.3389/fendo.2011.00036CrossRefGoogle Scholar
  273. Sun B, Kavanaugh SI, Tsai P-S (2012) Gonadotropin-releasing hormone in protostomes: insights from functional studies on Aplysia californica. Gen Comp Endocrinol 176(3):321–326.  https://doi.org/10.1016/j.ygcen.2011.11.030CrossRefPubMedGoogle Scholar
  274. Suzuki T, Hara A, Yamaguchi K, Mori K (1992) Purification and immunolocalization of a vitellin-like protein from the Pacific oyster Crassostrea gigas. Mar Biol 113(2):239–245.  https://doi.org/10.1007/BF00347277CrossRefGoogle Scholar
  275. Swann K, Lai FA (2016) Egg activation at fertilization by a soluble sperm protein. Physiol Rev 96(1):127–149.  https://doi.org/10.1152/physrev.00012.2015CrossRefPubMedGoogle Scholar
  276. Swanson WJ, Vacquier VD (1997) The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. Proc Natl Acad Sci U S A 94(13):6724–6729.  https://doi.org/10.1073/pnas.94.13.6724CrossRefPubMedPubMedCentralGoogle Scholar
  277. Takagi T, Nakamura A, Deguchi R, Kyozuka K (1994) Isolation, characterization, and primary structure of three major proteins obtained from Mytilus edulis sperm. J Biochem 116(3):598–605.  https://doi.org/10.1093/oxfordjournals.jbchem.a124566CrossRefPubMedGoogle Scholar
  278. Takeda N, Kon Y, Quiroga Artigas G, Lapébie P, Barreau C, Koizumi O, Kishimoto T, Tachibana K, Houliston E, Deguchi R (2018) Identification of jellyfish neuropeptides that act directly as oocyte maturation-inducing hormones. Development 145(2):dev156786.  https://doi.org/10.1242/dev.156786CrossRefPubMedGoogle Scholar
  279. Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, Shoguchi E, Fujiwara M, Shinzato C, Hisata K, Fujie M, Usami T, Nagai K, Maeyama K, Okamoto K, Aoki H, Ishikawa T, Masaoka T, Fujiwara A, Endo K, Endo H, Nagasawa H, Kinoshita S, Asakawa S, Watabe S, Satoh N (2012) Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res 19(2):117–130.  https://doi.org/10.1093/dnares/dss005CrossRefPubMedPubMedCentralGoogle Scholar
  280. Talbot P, Goudeau M (1988) A complex cortical reaction leads to formation of the fertilization envelope in the lobster, Homarus. Gamete Res 19(1):1–18.  https://doi.org/10.1002/mrd.1120190102CrossRefPubMedGoogle Scholar
  281. Tanabe T, Osada M, Kyozuka K, Inaba K, Kijima A (2006) Novel oocyte maturation arresting factor in the central nervous system of scallops inhibits serotonin-induced oocyte maturation and spawning of bivalve mollusks. Gen Comp Endocrinol 147(3):352–361.  https://doi.org/10.1016/j.ygcen.2006.02.004CrossRefPubMedGoogle Scholar
  282. Tanabe T, Yuan Y, Nakamura S, Itoh N, Takahashi KG, Osada M (2010) The role in spawning of a putative serotonin receptor isolated from the germ and ciliary cells of the gonoduct in the gonad of the Japanese scallop, Patinopecten yessoensis. Gen Comp Endocrinol 166(3):620–627.  https://doi.org/10.1016/j.ygcen.2010.01.014CrossRefPubMedGoogle Scholar
  283. Tanaka Y, Murakoshi M (1985) Spawning induction of the hermaphroditic scallop, Pecten albicans, by injection with serotonin. Bull Natl Res Inst Aquacult 7:9–12Google Scholar
  284. Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G (2014) Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 15:491.  https://doi.org/10.1186/1471-2164-15-491CrossRefPubMedPubMedCentralGoogle Scholar
  285. Thitiphuree T, Nagasawa K, Osada M (2019) Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis. J Steroid Biochem Mol Biol 186:22–33.  https://doi.org/10.1016/j.jsbmb.2018.09.004CrossRefPubMedGoogle Scholar
  286. Thomas TW, Eckberg WR, Dubé F, Galione A (1998) Mechanisms of calcium release and sequestration in eggs of Chaetopterus pergamentaceus. Cell Calcium 24(4):285–292.  https://doi.org/10.1016/S0143-4160(98)90052-5CrossRefPubMedGoogle Scholar
  287. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301(5640):1714–1717.  https://doi.org/10.1126/science.1086185CrossRefPubMedGoogle Scholar
  288. Tierney AJ (2001) Structure and function of invertebrate 5-HT receptors: a review. Comp Biochem Physiol A 128(4):791–804.  https://doi.org/10.1016/S1095-6433(00)00320-2CrossRefGoogle Scholar
  289. Togo T, Morisawa M (1997) Aminopeptidase-like protease released from oocytes affects oocyte surfaces and suppresses the acrosome reaction in establishment of polyspermy block in oocytes of the mussel Mytilus edulis. Dev Biol 182(2):219–227.  https://doi.org/10.1006/dbio.1996.8483CrossRefPubMedGoogle Scholar
  290. Togo T, Osanai K, Morisawa M (1995) Existence of three mechanisms for blocking polyspermy in oocytes of the mussel Mytilus edulis. Biol Bull 189(3):330–339.  https://doi.org/10.2307/1542150CrossRefPubMedGoogle Scholar
  291. Treen N, Itoh N, Miura H, Kikuchi I, Ueda T, Takahashi KG, Ubuka T, Yamamoto K, Sharp PJ, Tsutsui K, Osada M (2012) Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. Gen Comp Endocrinol 176(2):167–172.  https://doi.org/10.1016/j.ygcen.2012.01.008CrossRefPubMedGoogle Scholar
  292. Tsafriri A, Pomerantz SH (1986) Oocyte maturation inhibitor. Clin Endocrinol Metab 15(1):157–170.  https://doi.org/10.1016/S0300-595X(86)80047-0CrossRefPubMedGoogle Scholar
  293. Tsai P-S, Maldonado TA, Lunden JB (2003) Localization of gonadotropin-releasing hormone in the central nervous system and a peripheral chemosensory organ of Aplysia californica. Gen Comp Endocrinol 130(1):20–28.  https://doi.org/10.1016/S0016-6480(02)00519-1CrossRefPubMedGoogle Scholar
  294. Tsai P-S, Sun B, Rochester JR, Wayne NL (2010) Gonadotropin-releasing hormone-like molecule is not an acute reproductive activator in the gastropod, Aplysia californica. Gen Comp Endocrinol 166(2):280–288.  https://doi.org/10.1016/j.ygcen.2009.09.009CrossRefPubMedGoogle Scholar
  295. Tudge CC, Scheltinga DM, Jamieson BGM (2001) Spermatozoal morphology in the “symmetrical” hermit crab, Pylocheles (Bathycheles) sp. (Crustacea, Decapoda, Anomura, Paguroidea, Pylochelidae). Zoosystema 23(1):117–130Google Scholar
  296. Uki N, Kikuchi S (1974) On the effect of irradiated seawater with ultraviolet rays on inducing spawning of the scallop, Patinopecten yessoensis (Jay). Bull Tohoku Reg Fish Res Lab 34:87–92. (Abstract in English)Google Scholar
  297. Vacquier VD, Lee YH (1993) Abalone sperm lysin: unusual mode of evolution of a gamete recognition protein. Zygote 1(3):181–196.  https://doi.org/10.1017/S0967199400001465CrossRefPubMedGoogle Scholar
  298. Vacquier VD, Swanson WJ, Lee YH (1997) Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J Mol Evol 44(Suppl 1):S15–S22.  https://doi.org/10.1007/PL00000049CrossRefPubMedGoogle Scholar
  299. Varaksin AA, Varaksina GS, Reunova OV, Latyshev NA (1992) Effect of serotonin, some fatty acids and their metabolites on reinitiation of meiotic maturation in oocytes of bivalve Spisula sachalinensis (Schrenk). Comp Biochem Physiol C 101(3):627–630.  https://doi.org/10.1016/0742-8413(92)90097-QCrossRefGoogle Scholar
  300. Vogeler S, Galloway TS, Lyons BP, Bean TP (2014) The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 15:369.  https://doi.org/10.1186/1471-2164-15-369CrossRefPubMedPubMedCentralGoogle Scholar
  301. Vogt G, Falckenhayn C, Schrimpf A, Schmid K, Hanna K, Panteleit J, Helm M, Schulz R, Lyko F (2015) The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol Open 4(11):1583–1594.  https://doi.org/10.1242/bio.014241CrossRefPubMedPubMedCentralGoogle Scholar
  302. Von Stetina JR, Orr-Weaver TL (2011) Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 3(10):a005553.  https://doi.org/10.1101/cshperspect.a005553CrossRefGoogle Scholar
  303. Walley LJ, White F, Brander KM (1971) Sperm activation and fertilization in Balanus balanoides. J Mar Biol Assoc UK 51(2):489–494.  https://doi.org/10.1017/S0025315400031933CrossRefGoogle Scholar
  304. Wang YL, Sun WJ, He L, Li Q, Wang Q (2015) Morphological alterations of all stages of spermatogenesis and acrosome reaction in Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 360(2):401–412.  https://doi.org/10.1007/s00441-014-2092-5CrossRefPubMedGoogle Scholar
  305. Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L, Hu X, Sun X, Wang J, Zhao C, Wang Y, Wang D, Huang X, Wang R, Lv J, Li Y, Zhang Z, Liu B, Lu W, Hui Y, Liang J, Zhou Z, Hou R, Li X, Liu Y, Li H, Ning X, Lin Y, Zhao L, Xing Q, Dou J, Li Y, Mao J, Guo H, Dou H, Li T, Mu C, Jiang W, Fu Q, Fu X, Miao Y, Liu J, Yu Q, Li R, Liao H, Li X, Kong Y, Jiang Z, Chourrout D, Li R, Bao Z (2017) Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 1(5):0120.  https://doi.org/10.1038/s41559-017-0120CrossRefGoogle Scholar
  306. Waterman AJ (1934) Observation on reproduction, prematuration and fertilization in Sabellaria vulgaris. Biol Bull 67(1):97–114CrossRefGoogle Scholar
  307. Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31(6):1391–1401.  https://doi.org/10.1093/molbev/msu080CrossRefPubMedGoogle Scholar
  308. Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, Zaydfudim V, Conner S (2001) The biology of cortical granules. Int Rev Cytol 209:117–206CrossRefGoogle Scholar
  309. Wilburn DB, Tuttle LM, Klevit RE, Swanson WJ (2018) Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution. Proc Natl Acad Sci U S A 115(6):1310–1315.  https://doi.org/10.1073/pnas.1709061115CrossRefPubMedPubMedCentralGoogle Scholar
  310. Yamaguchi S, Yusa Y, Sawada K, Takahashi S (2013) Sexual systems and dwarf males in barnacles: integrating life history and sex allocation theories. J Theor Biol 320:1–9.  https://doi.org/10.1016/j.jtbi.2012.12.001CrossRefPubMedGoogle Scholar
  311. Yamamichi Y, Sekiguchi K (1982) Axoneme patterns of spermatozoa of Asian horseshoe crabs. Experientia 38(10):1219–1220.  https://doi.org/10.1007/BF01959750CrossRefGoogle Scholar
  312. Yin X, Eckberg WR (2009) Characterization of phospholipases C beta and gamma and their possible roles in Chaetopterus egg activation. Mol Reprod Dev 76(5):460–470.  https://doi.org/10.1002/mrd.20961CrossRefPubMedGoogle Scholar
  313. Young KG, Chang JP, Goldberg JI (1999) Gonadotropin-releasing hormone neuronal system of the freshwater snails Helisoma trivolvis and Lymnaea stagnalis: possible involvement in reproduction. J Comp Neurol 404(4):427–437.  https://doi.org/10.1002/(SICI)1096-9861(19990222)404:4<427::AID-CNE1>3.0.CO;2-RCrossRefPubMedGoogle Scholar
  314. Yuan Y, Tanabe T, Maekawa F, Inaba K, Maeda Y, Itoh N, Takahashi KG, Osada M (2012) Isolation and functional characterization for oocyte maturation and sperm motility of the oocyte maturation arresting factor from the Japanese scallop, Patinopecten yessoensis. Gen Comp Endocrinol 179(3):350–357.  https://doi.org/10.1016/j.ygcen.2012.09.006CrossRefPubMedGoogle Scholar
  315. Zhang L, Wayne NL, Sherwood NM, Postigo HR, Tsai P-S (2000) Biological and immunological characterization of multiple GnRH in an opisthobranch mollusk, Aplysia californica. Gen Comp Endocrinol 118(1):77–89.  https://doi.org/10.1006/gcen.2000.7457CrossRefPubMedGoogle Scholar
  316. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012a) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54.  https://doi.org/10.1038/nature11413CrossRefPubMedGoogle Scholar
  317. Zhang Y, Wang Z, Yan X, Yu R, Kong J, Liu J, Li X, Li Y, Guo X (2012b) Laboratory hybridization between two oysters: Crassostrea gigas and Crassostrea hongkongensis. J Shellfish Res 31(3):619–625.  https://doi.org/10.2983/035.031.0304CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiologyMiyagi University of EducationSendaiJapan
  2. 2.Graduate School of Agricultural Science, Tohoku UniversitySendaiJapan

Personalised recommendations