Advertisement

Power Quality Enhancement Using DSTATCOM with Reduced Switch-Based Multilevel Converter

  • Sudheer Vinnakoti
  • Anusha Palisetti
  • Venkata Reddy Kota
Conference paper
  • 22 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 626)

Abstract

From the past few decades, the increased usage of non-conventional energy sources and nonlinear loads alarmed the researchers more concern about the power quality (PQ). Distribution static compensator (DSTATCOM) is voltage source inverter (VSI)-based shunt compensating custom power devices (CPD) used for current harmonic mitigation and also for reactive power compensation. The features of traditional multilevel inverters at high levels motivated the researchers to implement reduced switch topologies (RST) as they aim for reduction in cost, volume and to improve reliability of the system. This paper proposes a five-level RST-based DSTATCOM, which reduces the switch count to 33% compared to conventional multilevel converters. %THDs of five-level diode-clamped converter (DCC) and the proposed RST-based DSTATCOMs under same loading conditions are compared to show the potency of the converter. All the simulations will be carried out in MATLAB/Simulink software.

Keywords

Power quality (PQ) Custom power devices (CPD) Distribution static compensator (DSTATCOM) Reduced switch topology (RST) Synchronous reference frame (SRF) Total harmonic distortion (THD) 

References

  1. 1.
    J. Benedek, T.T. Sebestyen, B. Bartok, Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew. Sustain. Energy Rev. 90, 516–535 (J. Elsevier, Romania, 2018)Google Scholar
  2. 2.
    S. Guo, Q. Liu, J. Sun, H. Jin, A review on the utilization of hybrid renewable energy. Renew. Sustain. Energy Rev. 91, 1121–1147 (J. Elsevier, China, 2018)Google Scholar
  3. 3.
    O. Prakash Mahela, A. Gafoor Shaik, Topological aspects of power quality improvement techniques: a comprehensive overview. Renew. Sustain. Energy Rev. 58, 1129–1142 (J. Elsevier, India, 2016)Google Scholar
  4. 4.
    W.U. Tareen, S. Mekhilef, M. Seyedmahmoudian, B. Horan, Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 70, 635–655 (J. Elsevier, Australia, 2017)Google Scholar
  5. 5.
    F.H. Gandoman, A. Ahmadi, A.M. Sharaf, P. Siano, J. Pou, B. Hredzak, V.G. Agelidis, Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renew. Sustain. Energy Rev. 82, 502–514 (J. Elsevier, Australia, 2018)Google Scholar
  6. 6.
    O. Prakash Mahela, A. Gafoor Shaik, A review of distribution static compensator, renewable and sustainable energy reviews. Renew. Sustain. Energy Rev. 50, 531–546 (J. Elsevier, Jodhpur, India, 2015)Google Scholar
  7. 7.
    B. Singh, P. Jayaprakash, D.P. Kothari, A. Chandra, K. Al Haddad, Comprehensive study of DSTATCOM configurations. IEEE Trans. 10, 854–870 (India, 2014)Google Scholar
  8. 8.
    A. Sinha, K.C. Jana, M.K. Das, An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system. Solar Energy 170, 633–657 (J. Elsevier, Dhanbad, India, 2018)Google Scholar
  9. 9.
    N. Prabaharan, K. Palanisamy, A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications. Renew. Sustain. Energy Rev. 76, 1248–1282 (J. Elsevier, Tamil Nadu, India, 2017)Google Scholar
  10. 10.
    R. Kumar, H.O. Bansal, Shunt active power filter: current status of control techniques and its integration to renewable energy sources. Sustain. Cities Soc. (J. Elsevier, Rajasthan, India, 2018)Google Scholar
  11. 11.
    R.S. Herrera, P. Salmeron, H. Kim, Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results. IEEE Trans. 55(1), 184–196 (Chungnam, Korea, 2008)Google Scholar
  12. 12.
    B. Singh, J. Solanki, A comparison of control algorithms for DSTATCOM. IEEE Trans. 56(7), 2738–2745 (New Delhi, India, 2009)Google Scholar
  13. 13.
    M. Qasim, P. Kanjiya, V. Khadkikar, Artificial-neural-network-based phase-locking scheme for active power filters. IEEE Trans. 61(8), 3857–3866 (Abu Dhabi, UAE, 2014)Google Scholar
  14. 14.
    D. Amoozegar, DSTATCOM modelling for voltage stability with fuzzy logic PI current controller. Electr. Power Energy Syst. 76, 129–135 (J. Elsevier, Shiraz, Iran, 2016)Google Scholar
  15. 15.
    J. Fattahi, H. Schriemer, B. Bacque, R. Orr, K. Hinzer, J.E. Haysom, High stability adaptive microgrid control method using fuzzy logic. Sustainable Cities Soc 25, 57–64 (J. Elsevier, Ontario, Canada, 2016)Google Scholar
  16. 16.
    V.F. Pires, A. Cordeiro, D. Foito, J.F. Silva, Three-phase multilevel inverter for grid-connected distributed photovoltaic systems based in three three-phase two-level inverters. Solar Energy 174, 1026–1034 (J. Elsevier, Setubal, Portugal, 2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sudheer Vinnakoti
    • 1
  • Anusha Palisetti
    • 1
  • Venkata Reddy Kota
    • 2
  1. 1.Department of E.E.ERaghu Engineering College (Autonomous)Dakamarri, VisakhapatnamIndia
  2. 2.Department of E.E.EUniversity College of Engineering, JNTUKKakinada, VisakhapatnamIndia

Personalised recommendations