Local Fact Change Logic

  • Declan ThompsonEmail author
Conference paper
Part of the Logic in Asia: Studia Logica Library book series (LIAA)


We investigate a modal logic of model change, introducing a new operator which allows for changing the valuation at a particular state in a model. After investigating some properties of the logic, and aspects of its expressive power, we show it to be undecidable by way of a reduction using memory logic.



I would like to thank Carlos Areces for very helpful input, especially in connection with memory logics. Ben Sparkes encouraged investigating similarities with hybrid logics, which led to many of the results in this paper. I also received very helpful feedback from Johan van Benthem, the members of the Logic Workshop at Stanford, and the participants of the Fourth Asian Workshop in Philosophical Logic. Finally, the anonymous reviewers provided very useful feedback.


  1. Areces, Carlos, Raul Fervari, Guillaume Hoffmann, and Mauricio Martel. 2017. Undecidability of Relation-Changing Modal Logics. In Dynamic Logic. New Trends and Applications, vol. 23, 1–16. Lecture Notes in Computer Science. Cham: Springer. ISBN: 978-3-319-73578-8 978-3- 319-73579-5.Google Scholar
  2. Areces, Carlos. 2007. Hybrid Logics: The Old and The New. In Proceedings of LogKCA-07, 15–29.Google Scholar
  3. Areces, Carlos, Diego Figueira, Santiago Figueira, and Sergio Mera. 2011. The Expressive Power of Memory Logics. The Review of Symbolic Logic 4 (02): 290–318.CrossRefGoogle Scholar
  4. Aucher, Guillaume, Philippe Balbiani, Luis Fariñas del Cerro, and Andreas Herzig. 2009. Global and Local Graph Modifiers. Electronic Notes in Theoretical Computer Science 231(25): 293–307; In Proceedings of the 5th Workshop on Methods for Modalities (M4M5 2007).Google Scholar
  5. Aucher, Guillaume, Johan van Benthem, and Davide Grossi. 2018. Modal Logics of Sabotage Revisited. Journal of Logic and Computation 28 (2): 269–303.CrossRefGoogle Scholar
  6. Balbiani, Philippe, Andreas Herzig, and Nicolas Troquard. 2013. Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, 143–152. LICS ’13. Washington: IEEE Computer Society. ISBN: 978-0-7695-5020-6.Google Scholar
  7. Benthem, van, and Johan. 1997. Modal Foundations for Predicate Logic. Logic Journal of the IGPL 5: 259–286.Google Scholar
  8. Benthem, van, Patrick Girard Johan, and Olivier Roy. 2009. Everything Else Being Equal: A Modal Logic for Ceteris Paribus Preferences. Journal of Philosophical Logic 38 (1): 83–125.Google Scholar
  9. Blackburn, Patrick, and Jerry Seligman. 1995. Hybrid Languages. Journal of Logic, Language and Information 4 (3): 251–272.CrossRefGoogle Scholar
  10. Bockmayr, Alexander, and Heike Siebert. 2013. Bio-Logics: Logical Analysis of Bioregulatory Networks. In Programming Logics, vol. 7797, eds. Andrei Voronkov and Christoph Weidenbach, 19-34. Berlin: Springer. ISBN: 978-3-642-37650-4 978-3-642-37651-1.Google Scholar
  11. de Bruin, B.P. 2004. Explaining Games: On the Logic of Game Theoretic Explanations. Amsterdam: Institute for Logic, Language and Computation. ISBN: 978-90-5776-129-4.Google Scholar
  12. der Hoek, Van, and Wiebe, and Michael Wooldridge. 2005. On the Logic of Cooperation and Propositional Control. Artificial Intelligence 164(1–2): 81–119.Google Scholar
  13. Gutierrez, Julian, Paul Harrenstein, and Michael Wooldridge. 2015. Iterated Boolean Games. Information and Computation 242: 53–79.CrossRefGoogle Scholar
  14. Harrenstein, Paul, Wiebe van der Hoek, John-Jules Meyer, and Cees Witteveen. 2001. Boolean Games. In Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, 287–298. Burlington: Morgan Kaufmann Publishers Inc.Google Scholar
  15. Harrenstein, Paul, Wiebe Van der Hoek, John-Jules Meyer, and Cees Witteveen. 2003. A Modal Characterization of Nash Equilibrium. Fundamenta Informaticae 57(2-4): 281–321.Google Scholar
  16. Mera, Sergio Fernando. 2009. Modal Memory Logics. PhD Thesis, Universidad de Buenos Aires.Google Scholar
  17. Miller, Joseph S., and Lawrence S. Moss. 2005. The Undecidability of Iterated Modal Relativization. Studia Logica 79, no. 3 (1): 373–407.Google Scholar
  18. Seligman, Jeremy, and Declan Thompson. 2015. Boolean Network Games and Iterated Boolean Games. In Logic, Rationality, and Interaction, eds. Wiebe van der Hoek, Wesley H. Holliday, and Wen-fang Wang, 353–365. Lecture Notes in Computer Science. Berlin: Springer. ISBN: 978-3-662-48561-3.Google Scholar
  19. Tiomkin, M.L., and J.A. Makowsky. 1985. Propositional Dynamic Logic with Local Assignment. Theoretical Computer Science 36 (1): 71–87.CrossRefGoogle Scholar
  20. van Benthem, Johan. 2011. Logical Dynamics of Information and Interaction. Cambridge: Cambridge University Press. ISBN: 978-0-521-76579-4.Google Scholar
  21. van Benthem, Johan. 2018. Constructive Agents. Indagationes Mathematicae 29(1): 23–35.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations