Blockchain for Intelligent Gas Monitoring in Smart City Scenario

  • Ashutosh MishraEmail author
  • Rakesh Shrestha
  • Shiho Kim
  • Navin Singh Rajput
Part of the Blockchain Technologies book series (BT)


The increasing urbanization demands development of smart cities. Smart cities can be considered as to serve the requirement of its citizen in better way. The smart cities have many applications involving intelligent gas monitoring. In this chapter we will find about the intelligent gas monitoring in smart city scenario. We will see the aspects of smart gas monitoring, understand the concept of gas sensing, requirement of gas monitoring viz., classification and quantification of gases/odors and the brief introduction about the gas sensing. Further, we will understand the application of blockchain in the intelligent gas monitoring.


Blockchain Gas sensing Intelligent gas monitoring Smart city 



This research was supported by Korea Research Fellowship program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(NRF-2019H1D3A1A01071115).


  1. 1.
    Harrison C, Donnelly IA (2011) A theory of smart cities. In: Proceedings of the 55th annual meeting of the ISSS-2011, Hull, UK, vol 55, No 1Google Scholar
  2. 2.
    Ismagilova E, Hughes L, Dwivedi YK, Raman KR (2019) Smart cities: advances in research—an information systems perspective. Int J Inf Manage 47:88–100CrossRefGoogle Scholar
  3. 3.
    Deakin M, Waer H (2011) From intelligent to smart cities. Intell Build Int 3(3):140–152CrossRefGoogle Scholar
  4. 4.
    Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) A survey on gas sensing technology. Sensors 12(7):9635–9665CrossRefGoogle Scholar
  5. 5.
    Ponzoni A, Baratto C, Cattabiani N, Falasconi M, Galstyan V, Nunez-Carmona E, Rigoni F, Sberveglieri V, Zambotti G, Zappa D (2017) Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR Lab, Brescia (Italy). Sensors 17(4):714CrossRefGoogle Scholar
  6. 6.
    Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuat B: Chem 18(1–3):210–211CrossRefGoogle Scholar
  7. 7.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352CrossRefGoogle Scholar
  8. 8.
    Zarcomb S (1984) Theoretical basis for identification and measurement of air contaminants using an array of sensors having partially overlapping sensitivities. Sens Actuators 6:225–243CrossRefGoogle Scholar
  9. 9.
    Gutierrez-Osuna R, Nagle HT (1999) A method for evaluating data-preprocessing techniques for odour classification with an array of gas sensors. IEEE Trans Syst Man Cybern Part B (Cybern) 29(5):626–632CrossRefGoogle Scholar
  10. 10.
    Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T, Ning H (2019) Review on smart gas sensing technology. Sensors 19(17):3760CrossRefGoogle Scholar
  11. 11.
    Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Tech J 32(1):1–41CrossRefGoogle Scholar
  12. 12.
    Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24(2):181–198CrossRefGoogle Scholar
  13. 13.
    Mishra A, Rajput NS (2018) A novel modular ANN architecture for efficient monitoring of gases/odours in real-time. Mater Res Exp 5(4):045904CrossRefGoogle Scholar
  14. 14.
    Mishra A, Rajput NS, Singh D (2018) Performance evaluation of normalized difference based classifier for efficient discrimination of volatile organic compounds. Mater Res Exp 5(9):095901CrossRefGoogle Scholar
  15. 15.
    Di Natale C, Davide F, D’Amico A (1995) Pattern recognition in gas sensing: well-stated techniques and advances. Sens Actuat B: Chem 23(2–3):111–118CrossRefGoogle Scholar
  16. 16.
    Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuat B: Chem 244:182–210CrossRefGoogle Scholar
  17. 17.
    Rajput NS, Das RR, Mishra VN, Singh KP, Dwivedi R (2010) A neural net implementation of SPCA pre-processor for gas/odor classification using the responses of thick film gas sensor array. Sens Actuat B: Chem 148(2):550–558CrossRefGoogle Scholar
  18. 18.
    Mishra A, Rajput NS, Han G (2017) NDSRT: an efficient virtual multi-sensor response transformation for classification of gases/odors. IEEE Sens J 17(11):3416–3421CrossRefGoogle Scholar
  19. 19.
    Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 30(4):451–462MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sens Actuat B: Chem 110(1):13–22CrossRefGoogle Scholar
  21. 21.
    Kumar R, Das RR, Mishra VN, Dwivedi R (2010) A neuro-fuzzy classifier-cum-quantifier for analysis of alcohols and alcoholic beverages using responses of thick-film tin oxide gas sensor array. IEEE Sens J 10(9):1461–1468CrossRefGoogle Scholar
  22. 22.
    Sharma S, Mishra VN, Dwivedi R, Das RR (2013) Quantification of individual gases/odors using dynamic responses of gas sensor array with ASM feature technique. IEEE Sens J 14(4):1006–1011Google Scholar
  23. 23.
    Kim S, Deka GC (2019) Advanced applications of blockchain technologyGoogle Scholar
  24. 24.
    Kim S, Deka GC, Peng Z (2019) Role of blockchain technology in IoT applications. In: Advances in computersGoogle Scholar
  25. 25.
    Nakamoto S (2016) Bitcoin: a peer-to-peer electronic cash system, December 2008Google Scholar
  26. 26.
    Shrestha R, Bajracharya R, Shrestha AP, Nam SY (2019) A new-type of blockchain for secure message exchange in VANET. Digit Commun NetwGoogle Scholar
  27. 27.
    Shrestha R, Nam SY (2019) Regional blockchain for vehicular networks to prevent 51% attacks. IEEE Access 7:95021–95033CrossRefGoogle Scholar
  28. 28.
    Aitzhan NZ, Svetinovic D (2016) Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans Dependable Secure Comput 15(5):840–852CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ashutosh Mishra
    • 1
    Email author
  • Rakesh Shrestha
    • 1
  • Shiho Kim
    • 1
  • Navin Singh Rajput
    • 2
  1. 1.School of Integrated Technology, Yonsei Institute of Convergence TechnologyYonsei UniversityIncheonSouth Korea
  2. 2.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations