Synergy Between Hyperspectral (HYSPEX), Multispectral (SPOT 6/7, Sentinel-2) Remotely Sensed Data and LiDAR Data for Mapping the Authie Estuary (France)

  • Charles VerpoorterEmail author
  • Benoit Menuge
  • Patrick Launeau
  • Vona Méléder
  • Arnaud Héquette
  • Adrien Cartier
  • Vincent Sipka
Conference paper
Part of the Springer Water book series (SPWA)


The Authie estuary, located at the eastern part of the English Channel is of environmental, ecological, economic and societal importance. With the intention to better understand the sediment dynamic it is important to better assess the role of sediment dynamics including erosion, stabilization and sediment reworking processes which is challenging in such complex environment. It is also important to consider biogenic components such as the microphytobenthos (MPB) distribution, as the primary productivity may play an important role with the bio-stabilization process. As a consequence, there is a crucial need to provide a synoptic overview of inherent bio-physical characteristics of sediments (i.e., composition, water content, grain-size, and biomass) in estuarine environment by generating precise quantitative maps for predicting in a second step estuarine evolution by including sediment transport, sedimentation rates, coastal flows processes and sea level rise caused by climate change for instance. The use of the remote sensing technology is increasingly used for mapping estuarine and coastal environments by providing a synoptic overview of bio-physical characteristics of sediments. In that sense, the combination between remote sensing imaging, topographic data (LiDAR) and in situ measurements is suitable for improving our understanding of sediment dynamics with respect to physical and biological forcings. The main objective of this study is to demonstrate that the synergy between multispectral (i.e., SPOT 6–7 [1.5 m/pixel]; Sentinel-2, 10–60 m/pixel, 5–10 days)”, hyperspectral [Hyspex, 70 cm/pixel, 160 spectral bands] remote sensing images may be suitable for generating both reliable sedimentary and primary productivity budgets; at least for surficial sediments. All presented data were acquired during the same day (09/21/2017) in the framework TéléEST, CPER MARCO and CNRS-OMPBI projects.


Remote sensing Hyperspectral Multispectral LiDAR Physical properties mapping Morphology Bay of authie 



We would like to thank the CPER-MARCO and the BQR-ULCO-TéléEST for their funding supports allowing some of the field investigations within the Bay of Authie.

Some of the image computations were performed on resources provided by the SCOSI/ULCO (Service Commun du Système d’Information de l’Université du Littoral Côte d’Opale) Infrastructure for Computing through CALCULCO platform under the TéléEST project.

This work was supported by public funds received in the framework of GEOSUD, a project (ANR-10-EQPX-20) of the program “Investissements d’Avenir” managed by the French National Research Agency which allow us to collect SPOT 6/7 images.

Hyperspectral and 2016 LiDAR data were acquired in the frame of the Défi Littoral 2016 de la Mission pour l’interdisciplinarité du CNRS. The 2013 LiDAR data were obtained through the interregional program CLAREC funded by the Regional Councils of Normandy, Picardie and Nord-Pas de Calais and by the French Centre National de la Recherche Scientifique (CNRS).


  1. Adam, S., De Backer, A., De Wever, A., Sabbe, K., Toorman, E. A., Vincx, M., et al. (2010). Bio-physical characterization of sediment stability in mudflats using remote sensing: A laboratory experiment. Continental Shelf Research. Scholar
  2. Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain-size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Processes Landforms, 26, 1237–1248.CrossRefGoogle Scholar
  3. Briquet, A. (1930). Le littoral du nord de la France et son évolution morphologique, suivi d’un appendice, l’évolution du rivage du Nord de la France et l’activité de l’homme, Revue du Nord, 16, N°64, 313–319, ISSN: 0035–2624Google Scholar
  4. Crapoulet, A. (2015). Evolution du trait de côte, bilan sédimentaire et évaluation des zones à risques sur le littoral du Nord-Pas-de-Calais: Analyse multiéchelles par LiDAR aéroporté. These de doctorat en Geographie Physique. Wimereux: Universite du Littoral Cote d’Opale.Google Scholar
  5. Combe, J. P., Launeau, P., Carrere, V., Despan, D., Meleder, V., Barillé, L., et al. (2005). Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images. Remote Sensing of Environment, 98, 371–387. Scholar
  6. Deloffre, J., Verney, R., Lafite, R., Lesueur, P., Lesourd, S., & Cundy, A. B. (2007). Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and their preservation. Marine Geology, 241, 19–32. Scholar
  7. Deronde, B., Houthuys, R., Henriet, J.-P., & Lancker, V. V. (2008). Monitoring of the sediment dynamics along a sandy shoreline by means of airborne hyperspectral remote sensing and LIDAR: A case study in Belgium. Earth Surface Processes Landforms, 33, 280–294. Scholar
  8. Dobroniak, C. (2005). Morphological evolution and management proposals in the Authie Estuary, northern France. Proceeding Dunes and Estuaries, 2205, 537–545.Google Scholar
  9. Folk, R. L., & Ward, W. C. (1957). Brazos river bar: A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3–26.CrossRefGoogle Scholar
  10. Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of images quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.CrossRefGoogle Scholar
  11. Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747–1755.CrossRefGoogle Scholar
  12. Hesp, P. A., Ruz, M.-H., Hequette, A., Marin, D., & Miot da Silva, G. (2016). Geomorphology and synamics of a travelling cuspate foreland, Authie estuary France. Geomorphology, 254, 104–120. Scholar
  13. Kazemipour, F., Launeau, P., & Méléder, V. (2012). Microphytobenthos biomass mapping using the optical model of diatom biofilms: Application to hyperspectral images of Bourgneuf Bay. Remote Sensing of Environment, 127, 1–13.CrossRefGoogle Scholar
  14. Launeau, P., Méléder V., Verpoorter, C., Barillé, L. Kazemipour F., Giraud, M., et al. (2018). Microphytobenthos biomass and diversity mapping at different spatial scales with hyperspectral optical model. Remote Sensing, 10(5), 716.Google Scholar
  15. Laben, C. A., & Bower, B. V. (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent 6.011875.Google Scholar
  16. Méléder, V., Launeau, P., Barillé, L., Combe, J. P., Carrère, V., Jesus, B., et al. (2010). Hyperspectral imaging for mapping microphytobenthos in coastal areas. In M. Maanan & M. Robin (Eds.), Geomatic solutions for coastal environments (pp. 71–139). New York: Nova Science Publishers Inc.Google Scholar
  17. Rainey, M. P., Tyler, A. N., Gilvear, D. J., Bryant, R. G., & McDonald, P. (2003). Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote Sensing of Environment, 86, 480–490. Scholar
  18. Small, C., Steckler, M., Seeber, L., Akhter, S. H., Goodbred, S., Jr., Mia, B., et al. (2009). Spectroscopy of sediments in the Ganges-Brahmaputra delta: Spectral effects of moisture, grain size and lithology. Remote Sensing of Environment, 113, 342–361. Scholar
  19. Smith, G. M., Thomson, A. G., Moller, I., & Krompkamp, J. C. (2004). Using hyperspectral imaging for the assessment of mudflat surface stability. Journal of Coastal Research, 20(4), 1165–1175. West Palm Beach (Florida). ISSN 0749-0208.Google Scholar
  20. Sogreah, (2009). Diagnostic, étude d’opportunité et de faisabilité pour l’aménagement de la rive Nord de l’Authie. Rapport provisoire. Communauté de Communes Opale Sud.Google Scholar
  21. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. Scholar
  22. Ubertini, M., Lefebvre, S., Gangnery, A., Grangeré, K., Gendre, R. L., & Orvain, F. (2012). Spatial variability of benthic-pelagic coupling in an estuary ecosystem: Consequences for microphytobenthos resuspension phenomenon. PLoS ONE, 7, e44155.CrossRefGoogle Scholar
  23. Verpoorter, C., Carrère, V., & Combe, J. P. (2014). Visible, near-infrared spectrometry for simultaneous assessment of geophysical sediment properties (water and grain size) using the Spectral Derivative–Modified Gaussian Model. Journal of Geophysical Research : Earth Surface, 119, 2098–2122. hal- 01130379.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Charles Verpoorter
    • 1
    Email author
  • Benoit Menuge
    • 1
  • Patrick Launeau
    • 2
  • Vona Méléder
    • 3
  • Arnaud Héquette
    • 1
  • Adrien Cartier
    • 1
    • 4
  • Vincent Sipka
    • 1
  1. 1.LOG, Laboratoire D’Océanologie et de GéosciencesUniv. Littoral Côte D’Opale, Univ. Lille, CNRS, UMR 8187WimereuxFrance
  2. 2.Université de Nantes, UMR 6112 CNRS, Laboratoire de Planétologie et Géodynamique de Nantes, 2 Chemin de La HoussinièreNantesFrance
  3. 3.Université de Nantes, EA 2160 MMS, Laboratoire Mer Molécule Santé de Nantes, 2 Chemin de La HoussinièreNantesFrance
  4. 4.GéodunesDunkirkFrance

Personalised recommendations