A Cognition Scanning on Popularity Prediction of Videos

  • Neeti SangwanEmail author
  • Vishal Bhatnagar
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 100)


There is an explosive growth of the information on the web which leads to the online competition for the attention of the viewers. Among the large amount of the videos, only some of the videos become popular while the rest of the videos remain unknown. To anticipate the prevalence of the published video is a challenging task. It is noticed that some portion of the published visual content gains the significant popularity and the rest of the content is viewed by small number of the viewers. This largely depends upon intrinsic and extrinsic factors such as content included, relevancy to the users that influence the popularity is difficult. So, the popularity prediction becomes an active area of research. Various prediction methods are given by different researchers. In this paper, we have studied the various factors, tools and challenges involved in prediction process of the video popularity.


Popularity YouTube Correlation Prediction Video 


  1. 1.
    Li Z, Huang Y, Liu G, Wang F, Zhang ZL, Dai Y (2012) Cloud transcoder: bridging the format and resolution gap between internet videos and mobile devices. In: Proceedings of the 22nd international workshop on network and operating system support for digital audio and video, pp 33–38Google Scholar
  2. 2.
    Borghol Y, Ardon S, Carlsson N, Eager D, Mahanti A (2012) The untold story of the clones: content-agnostic factors that impact YouTube video popularity. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1186–1194Google Scholar
  3. 3.
    Wang Z, Sun L, Wu C, Yang S (2012) Guiding internet-scale video service deployment using microblog-based prediction. In: INFOCOM, 2012 proceedings IEEE, pp 2901–2905Google Scholar
  4. 4.
    Avramova Z, Wittevrongel S, Bruneel H, De Vleeschauwer D (2009) Analysis and modeling of video popularity evolution in various online video content systems: power-law versus exponential decay. In: First international conference on evolving internet. INTERNET’09, pp 95–100Google Scholar
  5. 5.
    Luo JG, Tang Y, Zhang M, Yang SQ (2007) Characterizing user behavior model to evaluate hard cache in peer-to-peer based video-on-demand service. In: International conference on multimedia modeling, pp 125–134Google Scholar
  6. 6.
    Luo J-G, Zhang Q, Tang Y, Yang S-Q (2009) A trace-driven approach to evaluate the scalability of P2P-based video-on-demand service. IEEE Trans Parallel Distrib Syst 20(1):59–70CrossRefGoogle Scholar
  7. 7.
    Tang W, Fu Y, Cherkasova L, Vahdat A (2007) Modeling and generating realistic streaming media server workloads. Comput Netw 51(1):336–356CrossRefGoogle Scholar
  8. 8.
    Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM conference on internet measurement, pp 1–14Google Scholar
  9. 9.
    Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc Natl Acad Sci 105(41):15649–15653CrossRefGoogle Scholar
  10. 10.
    Cha M, Kwak H, Rodriguez P, Ahn Y-Y, Moon S (2009) Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Trans Netw 17(5):1357–1370CrossRefGoogle Scholar
  11. 11.
    Szabo G, Huberman BA (2008) Predicting the popularity of online content. Available SSRN 1295610Google Scholar
  12. 12.
    Niu D, Liu Z, Li B, Zhao S (2011) Demand forecast and performance prediction in peer-assisted on-demand streaming systems. In: INFOCOM, 2011 proceedings IEEE, pp 421–425Google Scholar
  13. 13.
    Figueiredo F, Benevenuto F, Almeida JM (2011) The tube over time: characterizing popularity growth of youtube videos. In: Proceedings of the fourth ACM international conference on web search and data mining, pp 745–754Google Scholar
  14. 14.
    Famaey J, Wauters T, De Turck F (2011) On the merits of popularity prediction in multimedia content caching. In: International symposium on integrated network management (IM), 2011 IFIP/IEEE, pp 17–24Google Scholar
  15. 15.
    Borghol Y, Mitra S, Ardon S, Carlsson N, Eager D, Mahanti A (2011) Characterizing and modelling popularity of user-generated videos. Perform Eval 68(11):1037–1055CrossRefGoogle Scholar
  16. 16.
    Brodersen A, Scellato S, Wattenhofer M (2012) Youtube around the world: geographic popularity of videos. In: Proceedings of the 21st international conference on World Wide Web, pp 241–250Google Scholar
  17. 17.
    Nwana AO, Avestimehr S, Chen T (2013) A latent social approach to youtube popularity prediction. In: Global communications conference (GLOBECOM), 2013 IEEE, pp 3138–3144Google Scholar
  18. 18.
    Li H, Ma X, Wang F, Liu J, Xu K (2013) On popularity prediction of videos shared in online social networks. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 169–178Google Scholar
  19. 19.
    Roy SD, Mei T, Zeng W, Li S (2013) Towards cross-domain learning for social video popularity prediction. IEEE Trans Multimed 15(6):1255–1267CrossRefGoogle Scholar
  20. 20.
    Pinto H, Almeida JM, Gonçalves MA (2013) Using early view patterns to predict the popularity of youtube videos. In: Proceedings of the sixth ACM international conference on web search and data mining, pp 365–374Google Scholar
  21. 21.
    Ahmed M, Spagna S, Huici F, Niccolini S (2013) A peek into the future: predicting the evolution of popularity in user generated content. In: Proceedings of the sixth ACM international conference on web search and data mining, pp 607–616Google Scholar
  22. 22.
    Tatar A, De Amorim MD, Fdida S, Antoniadis P (2014) A survey on predicting the popularity of web content. J Internet Serv Appl 5(1):8CrossRefGoogle Scholar
  23. 23.
    Ding W, Shang Y, Guo L, Hu X, Yan R, He T (2015) Video popularity prediction by sentiment propagation via implicit network. In: Proceedings of the 24th ACM international on conference on information and knowledge management, pp 1621–1630Google Scholar
  24. 24.
    Fontanini G, Bertini M, Del Bimbo A (2016) Web video popularity prediction using sentiment and content visual features. In: Proceedings of the 2016 ACM on international conference on multimedia retrieval, pp 289–292Google Scholar
  25. 25.
    Ben Hassine N, Marinca D, Pascale M, Barth D (2015) Machine learning and popularity prediction of a video content. In: The 4th international conference on performance evaluation and modeling in wired and wireless networks (PEMWN)Google Scholar
  26. 26.
    Wu J, Zhou Y, Chiu DM, Zhu Z (2016) Modeling dynamics of online video popularity. IEEE Trans Multimed 18(9):1882–1895CrossRefGoogle Scholar
  27. 27.
    Mishra S, Rizoiu MA, Xie L (2016) Feature driven and point process approaches for popularity prediction. In: Proceedings of the 25th ACM international on conference on information and knowledge management, pp 1069–1078Google Scholar
  28. 28.
    Chen J, Song X, Nie L, Wang X, Zhang H, Chua TS (2016) Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: Proceedings of the 2016 ACM on multimedia conference, pp 898–907Google Scholar
  29. 29.
    Trzciński T, Rokita P (2017) Predicting popularity of online videos using support vector regression. IEEE Trans Multimed 19(11):2561–2570CrossRefGoogle Scholar
  30. 30.
    Kong Q, Rizoiu MA, Wu S, Xie L (2018) Will this video go viral? Explaining and predicting the popularity of Youtube videos. arXiv Prepr. arXiv1801.04117Google Scholar
  31. 31.
    Jia AL, Shen S, Li D, Chen S (2018) Predicting the implicit and the explicit video popularity in a user generated content site with enhanced social features. Comput Netw 140:112–125CrossRefGoogle Scholar
  32. 32.
    Marza V, JadidiNejad A, et al (2018) A novel caching strategy in video-on-demand (VoD) peer-to-peer (P2P) networks based on complex network theory. J Adv Comput Res 9(1):17–27Google Scholar
  33. 33.
    Yan H, Liu J, Li Y, Jin D, Chen S (2018) Spatial popularity and similarity of watching videos in large-scale urban environment. IEEE Trans Netw Serv ManagGoogle Scholar
  34. 34.
    Tan Z, Zhang Y (2018) Predicting the top-N popular videos via a cross-domain hybrid model. IEEE Trans MultimedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.GGS Indraprastha UniversityDwarkaIndia
  2. 2.MSITNew DelhiIndia
  3. 3.Ambedkar Institute of Advanced Communication Technologies and ResearchNew DelhiIndia

Personalised recommendations