An Evaluation of Local Binary Descriptors for Facial Emotion Classification

  • R. Arya
  • E. R. Vimina
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 103)


Feature descriptors are vitally important in the broad domain of computer vision. In software systems for face recognition, local binary descriptors find wide use as feature descriptors. Because they give more robust results in varying conditions such as pose, lighting and illumination changes. Precision depends on the correctness of representing the relationship in the local neighbourhood of a digital image into small structures. This paper presents the performance analysis of various binary descriptors such as local binary pattern (LBP), local directional pattern (LDP), local directional number pattern (LDNP), angular local directional pattern (ALDP), local optimal-oriented pattern (LOOP), support vector machine (SVM), K-nearest neighbour (KNN) and back propagation neural network (BPNN) are used for emotion classification. The results indicate that ALDP + Polynomial SVM on MUFE, JAFFE and Yale Face databases gives better accuracy with 96.00%, 94.44% and 89.00%, respectively.


Binary descriptors Facial Emotion Recognition SVM KNN BPNN 


  1. 1.
    Rashid TA (2016) Convolutional neural networks based method for improving facial expression recognition. Intell Syst Technol Appl 530Google Scholar
  2. 2.
    Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17(2):124–129CrossRefGoogle Scholar
  3. 3.
    Kumari J, Rajesh R, Pooja KM (2015) Facial expression recognition: a survey. Procedia Comput Sci 58:486–491CrossRefGoogle Scholar
  4. 4.
    Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process 24(3):980–993Google Scholar
  5. 5.
    Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multiview discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194CrossRefGoogle Scholar
  6. 6.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  7. 7.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  8. 8.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRefGoogle Scholar
  9. 9.
    Ahonen T, Hadid A, Pietikainen M (2006) Face recognition with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefGoogle Scholar
  10. 10.
    Rivera AR, Castillo JR, Chae O (2013) Local directional number pattern for face analysis: face and recognition. IEEE Trans Image Process 22(5):1740–1752Google Scholar
  11. 11.
    Su Y, Shan S, Chen X, Gao W (2009) Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans Image Process 18(8):1885–1896MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wolf L, Hassner T, Taigman Y (2011) Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans Pattern Anal Mach Intell 33(10):1978–1990CrossRefGoogle Scholar
  13. 13.
    Huang D, Shen C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man and Cyber-Part C 41(6):765–781CrossRefGoogle Scholar
  14. 14.
    Ojala T, Pietikinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proc, ICPRCrossRefGoogle Scholar
  15. 15.
    Jabid T, Kabir MH, Chae O (2010) Local directional pattern (LDP) for face recognition. Proc Int Conf IEEE on Consum Electr 329–330Google Scholar
  16. 16.
    Zhong F, Zhang J (2013) Face recognition with enhanced local directional patterns. Neurocomputing 119:375–384CrossRefGoogle Scholar
  17. 17.
    Jabid T, Kabir MH, Chae O (2010) Robust facial expression recognition based on local directional pattern. ETRI J 32(5):784–794CrossRefGoogle Scholar
  18. 18.
    Shabat AM, Tapamo JR (2014) A comparative study of local directional pattern for texture classification. In: Proc Int Conf IEEE World Symp Computer Applications & Research (WSCAR), pp 1–7Google Scholar
  19. 19.
    Shabat AMM, Tapamo J (2018) Angled local directional pattern for texture analysis with an application to facial expression recognition. IET Comput Vision 12(5):603–608CrossRefGoogle Scholar
  20. 20.
    Chakraborti T, McCane B, Mills S, Pal U (2018) LOOP descriptor: local optimal-oriented pattern. IEEE Signal Process Lett 25(5):635–639CrossRefGoogle Scholar
  21. 21.
    Ramirez Rivera A, Rojas Castillo J, Oksam Chae O (2013) Local directional number pattern for face analysis: face and expression recognition. IEEE Trans Image Process 22(5):1740–1752MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. Arya
    • 1
  • E. R. Vimina
    • 1
  1. 1.Department of Computer Science & ITAmrita Vishwa Vidyapeetham UniversityKochiIndia

Personalised recommendations