Advertisement

Nanotechnology Applications in Gastric Cancer

  • Begum Dariya
  • Eluri Pavitra
  • Saimila Momin
  • Ganji Seeta Rama RajuEmail author
Chapter
  • 30 Downloads
Part of the Diagnostics and Therapeutic Advances in GI Malignancies book series (DTAGIM)

Abstract

The Gastric cancer (GC) is the third deadliest malignant disease worldwide. The most common conventional therapies include the use of anticancer drugs; however, their use is ineffective and is limited due to the poor solubility of the drug and its ability to damage the immune system, since anticancer drugs have a small therapeutic drug, overdosing can lead to the toxicity in the systemic organs such as lung, liver and kidneys. Nanotechnology, which has been developed about a decade ago is considered to be a more advantageous therapy compared to the conventional methods for the therapy of cancers like GC. Varied type of nanoparticles that are multifunctional are now used to enhance the solubility and effectiveness of the drug for the treatment, prevention and diagnosis with the annual clinical trials. Moreover, they are biocompatible and less toxic to the normal healthy cells. The organic and inorganic nanoparticles that are used in the cancer diagnosis and drug delivery system include lipid, protein, metal and polymer-based materials. This chapter gives an overview on the types of nanoparticle used in the research for the GC therapy. Additionally, we have briefly described the combinational approaches, including gene therapy and immunotherapy, along with nanoparticles that includes antibody mediated, enzyme and ligand mediated strategies.

Keywords

Gastric cancer Nanoparticles Chemodrugs Drug delivery system Genetherapy 

Abbreviations

AFM

Atomic force microscopy

AlPcS4

Aluminum phthalocyanine chloride tetrasulfonic acid

AuNC

Gold nanocages

BCRP

Breast cancer resistant protein

BRET

Bioluminescence resonance energy transfer

CIC

Cancer initiating cells

CL-NA

Cationic liposome nucleic acid

CSC

Cancer stem cells

CT

Computed tomography

DAC

Deoxycytidine

DFC

Farnesiferol C with dendrosome

DPA

Diphenyl amine

EBVaGC

Epstein-barr virus associated GC

ECM

Extracellular matrix

FA

Folic acid

FR

Folate receptor

FTIR

Fourier transform infrared spectroscopy

GC

Gastric cancer

His6

Histidine tag

ICG

Indocyanine green loaded mesoporous silica

LOX

Lysyl oxidase

mAb

Monoclonal antibody

MBA

Mercapto benzoic acid

MET

Methionine

MMP

Matric metalloproteins

MPA

Mercapto propionic acid

MRI

Magnetic resonance imaging

PAGA

Pluronic-poly[α-(4-aminobutyl)-1-glycolic acid]

PAMAM

Polyamidoamine

PBA

Phenylboronic acid

PDT

Photodynamic therapy

PEG

Polyethylene glycol

PEI

Polyethylenimine

PET

Positron emission tomography

PLGA

Poly(D, L-lactide-co-glycolide acid)

QD

Quantum dots

rBSA

Reduced bovine serum albumin

rLuc

Renilla luciferase

ROS

Reactive oxygen species

SATB1

AT rich sequence binding protein 1

SERS

Surface enhanced raman scatterings

SPION

Superparamagnetic iron oxide nanoparticle

TF

Tissue factor

TPA

Two photon absorption

References

  1. Aas Z, Babaei E, Feizi MAH, Dehghan G (2015) Anti-proliferative and apoptotic effects of dendrosomal farnesiferol C on gastric cancer cells. Asian Pac J Cancer Prev 16:5325–5329CrossRefGoogle Scholar
  2. Ahmed N (2005) 23 years of the discovery of helicobacter pylori: is the debate over? BioMed CentralGoogle Scholar
  3. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bar-Zeev M, Assaraf YG, Livney YD (2016) β-Casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 7:23322CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bar-Zeev M, Kelmansky D, Assaraf YG, Livney YD (2018) β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. Eur J Pharm Biopharm 133:240–249CrossRefGoogle Scholar
  6. Barzegar Behrooz A, Nabavizadeh F, Adiban J, Shafiee Ardestani M, Vahabpour R, Aghasadeghi MR, Sohanaki H (2017) Smart bomb AS 1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol 44:41–51CrossRefGoogle Scholar
  7. Cai J, Qian K, Zuo X, Yue W, Bian Y, Yang J, Wei J, Zhao W, Qian H, Liu B (2019) PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J Biomater Appl 33:1394–1406CrossRefGoogle Scholar
  8. Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D (2019) Monodisperse Au@ Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta 198:45–54CrossRefGoogle Scholar
  9. Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, Liao C, Liang B, Huang B, Huang K (2012) Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine 7:359PubMedPubMedCentralGoogle Scholar
  10. Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, Huang K, Shuai X (2013) Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol 48:809–821CrossRefGoogle Scholar
  11. Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55:1919–1922CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen G, Li S-Y, Malik HT, Ma Y-G, Xu H, Sun L-K (2016) Organic two-photon nanoparticles modulate reactive oxygen species, intracellular calcium concentration, and mitochondrial membrane potential during apoptosis of human gastric carcinoma SGC-7901 cells. Biotechnol Lett 38:1269–1276CrossRefGoogle Scholar
  13. Dou Z, Xu Y, Sun H, Liu Y (2012) Synthesis of PEGylated fullerene–5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale 4:4624–4630CrossRefGoogle Scholar
  14. Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, Martins G, Barros A, Santos LL, Sarmento B (2019) Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int J Pharm 570:118646CrossRefGoogle Scholar
  15. Fornaro L, Lucchesi M, Caparello C, Vasile E, Caponi S, Ginocchi L, Masi G, Falcone A (2011) Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol 8:369CrossRefGoogle Scholar
  16. Fortunato L, Rushton L (2015) Stomach cancer and occupational exposure to asbestos: a meta-analysis of occupational cohort studies. Br J Cancer 112:1805CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao Z, Li Z, Yan J, Wang P (2017) Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther 11:2595CrossRefPubMedPubMedCentralGoogle Scholar
  18. Geraldo DA, Duran-Lara EF, Aguayo D, Cachau RE, Tapia J, Esparza R, Yacaman MJ, Gonzalez-Nilo FD, Santos LS (2011) Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells. Anal Bioanal Chem 400:483–492CrossRefGoogle Scholar
  19. Goldberg DS, Vijayalakshmi N, Swaan PW, Ghandehari H (2011) G3. 5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J Control Release 150:318–325CrossRefGoogle Scholar
  20. Harada M, Iwata C, Saito H, Ishii K, Hayashi T, Yashiro M, Hirakawa K, Miyazono K, Kato Y, Kano MR (2012) NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo. Int J Nanomedicine 7:2713PubMedPubMedCentralGoogle Scholar
  21. He Y, Zhao X, Gao J, Fan L, Yang G, Cho W, Chen H (2012) Quantum dots-based immunofluorescent imaging of stromal fibroblasts caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer. Int J Mol Sci 13:13764–13780CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hu N, Yin JF, Ji Z, Hong Y, Wu P, Bian B, Song Z, Li R, Liu Q, Wu F (2017) Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cell Physiol Biochem 44:2158–2173CrossRefGoogle Scholar
  23. Imano M, Yasuda A, Itoh T, Satou T, Peng Y-F, Kato H, Shinkai M, Tsubaki M, Chiba Y, Yasuda T (2012) Phase II study of single intraperitoneal chemotherapy followed by systemic chemotherapy for gastric cancer with peritoneal metastasis. J Gastrointest Surg 16:2190–2196CrossRefGoogle Scholar
  24. Ishigami H, Kitayama J, Kaisaki S, Hidemura A, Kato M, Otani K, Kamei T, Soma D, Miyato H, Yamashita H (2009) Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol 21:67–70CrossRefGoogle Scholar
  25. Ishigami H, Kitayama J, Kaisaki S, Yamaguchi H, Yamashita H, Emoto S, Nagawa H (2010) Phase I study of biweekly intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel for gastric cancer with peritoneal metastasis. Oncology 79:269–272CrossRefGoogle Scholar
  26. Kataoka H, Mori Y, Shimura T, Nishie H, Natsume M, Mochizuki H, Hirata Y, Sobue S, Mizushima T, Sano H (2016) A phase II prospective study of the trastuzumab combined with 5-weekly S-1 and CDDP therapy for HER2-positive advanced gastric cancer. Cancer Chemother Pharmacol 77:957–962CrossRefGoogle Scholar
  27. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs 30:1621–1627CrossRefGoogle Scholar
  28. Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 9:711PubMedPubMedCentralGoogle Scholar
  29. Kulhari H, Pooja D, Rompicharla SV, Sistla R, Adams DJ (2015) Biomedical applications of trastuzumab: as a therapeutic agent and a targeting ligand. Med Res Rev 35:849–876CrossRefGoogle Scholar
  30. Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, Yu L, Qian X, Guo W, Ding Y (2011) Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One 6:e24172CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, Yang M, Qian X, Ding Y, Yu L (2013) Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One 8:e69643CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li C, Liang S, Zhang C, Liu Y, Yang M, Zhang J, Zhi X, Pan F, Cui DJB (2015) Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54:177–187CrossRefGoogle Scholar
  33. Li Y-F, Zhang H-T, Xin L (2018) Hyaluronic acid-modified polyamidoamine dendrimer g5-entrapped gold nanoparticles delivering metase gene inhibits gastric tumor growth via targeting cd44+ gastric cancer cells. J Cancer Res Clin Oncol 144:1463–1473CrossRefGoogle Scholar
  34. Liang S, Li C, Zhang C, Chen Y, Xu L, Bao C, Wang X (2015) CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics 5:970CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu W-F, Ji S-R, Sun J-J, Zhang Y, Liu Z-Y, Liang A-B, Zeng H-Z (2012a) CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int J Mol Sci 13:6399–6406CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu P, Wang H, Wang Q, Sun Y, Shen M, Zhu M, Wan Z, Duan Y (2012b) cRGD conjugated mPEG-PLGA-PLL nanoparticles for SGC-7901 gastric cancer cells-targeted delivery of fluorouracil. J Nanosci Nanotechnol 12:4467–4471CrossRefGoogle Scholar
  37. Liu D, Li X, Chen C, Li C, Zhou C, Zhang W, Zhao J, Fan J, Cheng K, Chen L (2018) Target-specific delivery of oxaliplatin to HER2-positive gastric cancer cells in vivo using oxaliplatin-au-fe3o4-herceptin nanoparticles. Oncol Lett 15:8079–8087PubMedPubMedCentralGoogle Scholar
  38. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039CrossRefGoogle Scholar
  39. Luo X, Peng X, Hou J, Wu S, Shen J, Wang L (2017) Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine 12:5331CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mirkin CA, Meade TJ, Petrosko SH, Stegh AH (2015) Nanotechnology-based precision tools for the detection and treatment of cancer. Springer, ChamCrossRefGoogle Scholar
  41. Muthu MS, Leong DT, Mei L, Feng S-S (2014) Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4:660CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nie J, Wang Y, Wang W (2016) In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy. Int J Pharm 509:168–177CrossRefGoogle Scholar
  43. Pan J, Sun L-C, Tao Y-F, Zhou Z, Du X-L, Peng L, Feng X, Wang J, Li Y-P, Liu L (2011) ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med 9:211CrossRefPubMedPubMedCentralGoogle Scholar
  44. Peng C, Liu J, Yang G, Li Y (2018) Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: quantum dot-based identification of biomarkers in cancer stromal cells. Int J Nanomedicine 13:161CrossRefGoogle Scholar
  45. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterologiczny 14:26PubMedGoogle Scholar
  46. Ruan J, Song H, Qian Q, Li C, Wang K, Bao C, Cui D (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33:7093–7102CrossRefGoogle Scholar
  47. Song Z, Liang X, Wang Y, Han H, Yang J, Fang X, Li Q (2019) Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer. Biomater Sci 7:1632–1642CrossRefGoogle Scholar
  48. Sun Z, Song X, Li X, Su T, Qi S, Qiao R, Wang F, Huan Y, Yang W, Wang J (2014) In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 6:14343–14353CrossRefGoogle Scholar
  49. Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I (2006) Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer 9:120–128CrossRefGoogle Scholar
  50. Thamphiwatana S, Fu V, Zhu J, Lu D, Gao W, Zhang L (2013) Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir 29:12228–12233CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tsuboi S, Jin T (2018) Recombinant protein (luciferase-IgG binding domain) conjugated quantum dots for BRET-coupled near-infrared imaging of epidermal growth factor receptors. Bioconjug Chem 29:1466–1474CrossRefGoogle Scholar
  52. Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Horiguchi H, Hiraki S, Ono S, Miyazaki H, Saito D (2014) Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer. Cancer Sci 105:1626–1630CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vijayaraj Kumar P, Venkata Subrahmanya Lokesh B (2014) Designing and in-vitro characterization of micelle forming amphiphilic PEGylated rapamycin nanocarriers for the treatment of gastric cancer. Curr Drug Deliv 11:613–620CrossRefGoogle Scholar
  54. Wang L, Wang Y, Li Z (2013) Nanoparticle-based tumor theranostics with molecular imaging. Curr Pharm Biotechnol 14:683–692CrossRefGoogle Scholar
  55. Wang Q, Zhang C, Shen G, Liu H, Fu H, Cui D (2014a) Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J Nanobiotechnol 12:58CrossRefGoogle Scholar
  56. Wang C, Bao C, Liang S, Zhang L, Fu H, Wang Y, Wang K, Li C, Deng M, Liao Q (2014b) HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer. Nanoscale Res Lett 9:274CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wang Q, Liu P, Sun Y, Wu H, Li X, Duan Y, Zhang Z (2014c) Pluronic-poly [α-(4-aminobutyl)-l-glycolic acid] polymeric micelle-like nanoparticles as carrier for drug delivery. J Nanosci Nanotechnol 14:4843–4850CrossRefGoogle Scholar
  58. Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, Yang S, Bian X, Fang D (2015) Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine 10:749CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y (2018) Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 26:774–783CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, Teesalu T, Safinya CR (2018) Competition of charge-mediated and specific binding by peptide-tagged cationic liposome–DNA nanoparticles in vitro and in vivo. Biomaterials 166:52–63CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wu Y, Xu X, Tang Q, Li Y (2012) A new type of silica-coated Gd(2)(CO(3))(3):Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology 23:205103CrossRefGoogle Scholar
  62. Wu F-l, Li R-T, Yang M, Yue G-F, Wang H-y, Liu Q, Cui F-b, Wu P-y, Ding H, Yu L-X (2015) Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett 363:7–16CrossRefGoogle Scholar
  63. Xin L, Cao J-Q, Liu C, Zeng F, Cheng H, Hu X-Y, Shao J-H (2015) Evaluation of rMETase-loaded stealth PLGA/liposomes modified with anti-CAGE scFV for treatment of gastric carcinoma. J Biomed Nanotechnol 11:1153–1161CrossRefGoogle Scholar
  64. Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C (2018) AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers. Int J Nanomedicine 13:2017CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xu S, Cui F, Huang D, Zhang D, Zhu A, Sun X, Cao Y, Ding S, Wang Y, Gao E (2019) PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine 14:17CrossRefGoogle Scholar
  66. Yamamoto Y, Hyodo I, Koga Y, Tsumura R, Sato R, Obonai T, Fuchigami H, Furuya F, Yasunaga M, Harada M (2015) Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models. Cancer Sci 106:627–634CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang F, Zheng Z, Zheng L, Qin J, Li H, Xue X, Gao J, Fang G (2018a) siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells. OncoTargets Ther 11:6811CrossRefGoogle Scholar
  68. Yang F, Li A, Liu H, Zhang H (2018b) Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther 12:3321CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ye W, Chow W-H, Lagergren J, Yin L, Nyrén O (2001) Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 121:1286–1293CrossRefGoogle Scholar
  70. Yoshida M, Sato M, Yamamoto Y, Maehara T, Naohara T, Aono H, Sugishita H, Sato K, Watanabe Y (2012) Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: interaction of chemotherapy and hyperthermia. J Gastroenterol Hepatol 27:406–411CrossRefGoogle Scholar
  71. Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Pan L, Gao G, Fu H, Fu S, Song H (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11:17CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Begum Dariya
    • 1
  • Eluri Pavitra
    • 2
  • Saimila Momin
    • 3
  • Ganji Seeta Rama Raju
    • 4
    Email author
  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityVanasthaliIndia
  2. 2.Department of Biological Engineering, Biohybrid Systems Research Center (BSRC)Inha UniversityIncheonRepublic of Korea
  3. 3.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  4. 4.Department of Energy and Materials EngineeringDongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations