Therapeutic Role of Phytochemicals in Colorectal Cancer

  • Begum Dariya
  • Balney Rajitha
  • Afroz Alam
  • Ganji Purnachandra NagarajuEmail author
Part of the Diagnostics and Therapeutic Advances in GI Malignancies book series (DTAGIM)


Colorectal cancer (CRC) is the universal disease of gastrointestine that has become a common health problem globally and is the principal reason for high mortality and morbidity rate worldwide. The novel conventional therapies including radio and chemotherapy have limitations like developing toxicity in healthy cells and bring about adverse side effects. Poor diet habits and modern life style are the major obstacles determined as the risk for CRC and developing a healthy diet habit and lifestyle may reduce the risk. However studies from epidemiology suggested that fruits and vegetables possess high content of phytochemicals and including them in daily diet would effectively reduce the risk of cancers related to digestive system including colorectal cancer. These natural products possess diverse pharmacological bioactivities and are thus widely explored now as novel agents. Their nontoxic nature and cytotoxicity features make the researchers perform immense research to develop novel drugs against various cancers including pancreatic, breast and colorectal cancer. It was evidenced from in vitro and in vivo, that the phytochemicals are strong anti-inflammatory, anti-oxidants, and anti-cancer agents showing their activity by controlling various signalling pathways that promote proliferation, survival, apoptosis, invasion and metastasis of CRC cells by down regulating and up regulating various proteins involved in these pathways.


Colorectal cancer Phytochemicals Polyphenols Flavonoids Isoflavones and cytotoxicity 





Aberrant crypt foci


Alpha serine/threonine—protein kinase


Adenosine monophosphate activated protein kinase




Adenomatous polyposis coli


Bcl-2 associated X protein


B-cell lymphoma


Bound polyphenols of inner shell


Cyclic adenosine monophosphate


Cyclin dependent kinase


Cellular inhibitors of apoptotic protein


CpG island methylator phenotype


Chromosomal instability


Colon adenocarcinoma cell lines




Colorectal cancer


cAMP response element binding protein 1


Cancer stem cells


Sanguisorba officinalis


1,2-dimethyl hydrazine


DNA methyltransferase


Ellagic acid




Epidermal growth factor


Epithelial mesenchymal transition


Extracellular signal regulated kinase


Estrogen receptor


Food and drug administration


Oxaliplatin (Made of folinic acid/chemodrug)


Forkhead box protein O3


Glioma associated oncogene


Glucose regulator protein


Glutathione S transferases


Histone deacetylase


Inflammatory bowel disease


Insulin growth factor1




Inducible nitric oxide synthase




Mitogen activated protein kinase


Mono-carbonyl curcumin analogue


Mitogen activated protein kinase


Matrix metalloproteinase


PCL methoxy poly ethylene glycol poly caprolactone


Multidrug resistance protein 1


Mechanistic target of rapamycin


Mucin-2 precursor


Nuclear factor kappa B


Naked cuticle 2


NADPH quinine oxidoreductase 1


Nuclear factor eryhthroid-2 p45-related factor 2


Organic cation or carnitine transported 2


Poly ADP ribose polymerase


P-Coumaric acid


Proliferating cell nuclear antigen


Pyruvate dehydrogenase kinase4


Phosphoinositide 3-kinase


Peroxisome proliferator activated receptor γ


Patch homolog


Reactive oxygen species


Secreted frizzled-related protein 2


Serine threonine protein kinase




Signal transducers and activators of transcription


Trans form of cinnamic acid


Transforming growth factor β


Tumor necrosis factor


T-cell originated protein kinase


Urokinase type plasminogen activator


Unfolded protein response


Wnt inhibitory factor1


X-linked inhibitor of apoptosis


  1. Abaza MS, Orabi KY, Al-Quattan E, Al-Attiyah RJ (2015) Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int 15:46CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andlauer W, Kolb J, Stehle P, Furst P (2000) Absorption and metabolism of genistein in isolated rat small intestine. J Nutr 130:843–846CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babich H, Krupka ME, Nissim HA, Zuckerbraun HL (2005) Differential in vitro cytotoxicity of (−)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. Toxicol In Vitro 19:231–242CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bagli E, Stefaniotou M, Morbidelli L, Ziche M, Psillas K, Murphy C, Fotsis T (2004) Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Res 64:7936–7946CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bahrami A, Amerizadeh F, ShahidSales S, Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, Maftouh M, Hassanian SM, Avan A (2017) Therapeutic potential of targeting wnt/beta-catenin pathway in treatment of colorectal cancer: rational and progress. J Cell Biochem 118:1979–1983CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banerjee S, Ali S, Azmi A, Kong D, Ahmad A, Bao B, Sarkar F (2012) Abstract 2698. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31–Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2698. doi:
  7. Barone M, Scavo MP, Papagni S, Piscitelli D, Guido R, Di Lena M, Comelli MC, Di Leo A (2010) ERbeta expression in normal, adenomatous and carcinomatous tissues of patients with familial adenomatous polyposis. Scand J Gastroenterol 45:1320–1328CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bell C, Hawthorne S (2008) Ellagic acid, pomegranate and prostate cancer—a mini review. J Pharm Pharmacol 60:139–144CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2:409–418CrossRefGoogle Scholar
  10. Budavari S (1989) An encyclopedia of chemicals, drugs, and biologicals. The Merck Index, 246Google Scholar
  11. Buhrmann C, Shayan P, Kraehe P, Popper B, Goel A, Shakibaei M (2015) Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 98:51–68CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caiazza F, Ryan EJ, Doherty G, Winter DC, Sheahan K (2015) Estrogen receptors and their implications in colorectal carcinogenesis. Front Oncol 5:19CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chang H, Lei L, Zhou Y, Ye F, Zhao G (2018) Dietary flavonoids and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies. Nutrients 10:950CrossRefGoogle Scholar
  14. Chen Y, Huang C, Zhou T, Chen G (2008) Genistein induction of human sulfotransferases in HepG2 and Caco-2 cells. Basic Clin Pharmacol Toxicol 103:553–559CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J (2014) Calycosin suppresses breast cancer cell growth via ERbeta-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One 9:e91245CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen J, Lin C, Yong W, Ye Y, Huang Z (2015) Calycosin and Genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem 35:722–728CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen L, Jiang B, Zhong C, Guo J, Zhang L, Mu T, Zhang Q, Bi X (2018) Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 39:471–481CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng C-W, Shieh P-C, Lin Y-C, Chen Y-J, Lin Y-H, Kuo D-H, Liu J-Y, Kao J-Y, Kao M-C, Way T-D (2009) Indoleamine 2, 3-dioxygenase, an immunomodulatory protein, is suppressed by (−)-epigallocatechin-3-gallate via blocking of γ-interferon-induced JAK-PKC-δ-STAT1 signaling in human oral cancer cells. J Agric Food Chem 58:887–894CrossRefGoogle Scholar
  19. Chian S, Li YY, Wang XJ, Tang XW (2014) Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev: APJCP 15:2911–2916CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chiou YS, Tsai ML, Nagabhushanam K, Wang YJ, Wu CH, Ho CT, Pan MH (2011) Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem 59:2725–2733CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chung SS, Dutta P, Austin D, Wang P, Awad A, Vadgama JV (2018) Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget 9:32943–32957PubMedPubMedCentralGoogle Scholar
  22. Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L, Liang Z, Ge W, Linlin J, Ping Z, Kun L, Xuegang S (2013) Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem 24:1766–1775CrossRefPubMedPubMedCentralGoogle Scholar
  23. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA (2015) Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 1855:104–121PubMedPubMedCentralGoogle Scholar
  24. Dasiram JD, Ganesan R, Kannan J, Kotteeswaran V, Sivalingam N (2017) Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother [ Biomedecine & Pharmacotherapie] 86:373–380CrossRefGoogle Scholar
  25. de Sousa Moraes LF, Sun X, MdCG P, Zhu M-J (2017) Anthocyanins/anthocyanidins and colorectal cancer: what is behind the scenes? Crit Rev Food Sci Nutr 59:1–13Google Scholar
  26. DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, Wang Y, Wang T (2017) Curcumin suppresses the colon cancer proliferation by inhibiting wnt/beta-catenin pathways via miR-130a. Front Pharmacol 8:877CrossRefPubMedPubMedCentralGoogle Scholar
  28. Du Z, Zhou F, Jia Z, Zheng B, Han S, Cheng J, Zhu G, Huang P (2016) The hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells. Iran J Basic Med Sci 19:1171–1176PubMedPubMedCentralGoogle Scholar
  29. Fan Y-z, Li G-h, Wang Y-h, Ren Q-y, Shi H-j (2010) Effects of genistein on colon cancer cells in vitro and in vivo and its mechanism of action. Zhonghua Zhong Liu Za Zhi 32:4–9PubMedPubMedCentralGoogle Scholar
  30. Faried A, Kurnia D, Faried L, Usman N, Miyazaki T, Kato H, Kuwano H (2007) Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol 30:605–613PubMedPubMedCentralGoogle Scholar
  31. Ferguson LR (2009) Nutrigenomics approaches to functional foods. J Am Diet Assoc 109:452–458CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445CrossRefGoogle Scholar
  33. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ganchi PA, Sun SC, Greene WC, Ballard DW (1993) A novel NF-kappa B complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol Cell Biol 13:7826–7835CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gee JM, Hara H, Johnson IT (2002) Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr Cancer 43:193–201CrossRefPubMedPubMedCentralGoogle Scholar
  36. Grosso G, Godos J, Lamuela-Raventos R, Ray S, Micek A, Pajak A, Sciacca S, D’Orazio N, Del Rio D, Galvano F (2017) A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res 61:1600930CrossRefGoogle Scholar
  37. Gruca A, Krawczyk Z, Szeja W, Grynkiewicz G, Rusin A (2014) Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules (Basel Switzerland) 19:18558–18573CrossRefGoogle Scholar
  38. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299CrossRefPubMedPubMedCentralGoogle Scholar
  39. Han J, Kurita Y, Isoda H (2013) Genistein-induced G2/M cell cycle arrest of human intestinal colon cancer Caco-2 cells is associated with Cyclin B1 and Chk2 down-regulation. Cytotechnology 65:973–978CrossRefPubMedPubMedCentralGoogle Scholar
  40. Harris GK, Qian Y, Leonard SS, Sbarra DC, Shi X (2006) Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J Nutr 136:1517–1521CrossRefPubMedPubMedCentralGoogle Scholar
  41. Harun Z, Ghazali AR (2012) Potential chemoprevention activity of pterostilbene by enhancing the detoxifying enzymes in the HT-29 cell line. Asian Pac J Cancer Prev: APJCP 13:6403–6407CrossRefPubMedPubMedCentralGoogle Scholar
  42. He Z-Y, Shi C-B, Wen H, Li F-L, Wang B-L, Wang J (2011) Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investig 29:208–213CrossRefGoogle Scholar
  43. Ho JW, Leung Y, Chan C (2002) Herbal medicine in the treatment of cancer. Curr Med Chem: Anti-Cancer Agents 2:209–214PubMedPubMedCentralGoogle Scholar
  44. Ho K, Yazan LS, Ismail N, Ismail M (2009) Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol 33:155–160CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hofmanova J, Hyrslova Vaculova A, Kozubik A (2013) Regulation of the metabolism of polyunsaturated fatty acids and butyrate in colon cancer cells. Curr Pharm Biotechnol 14:274–288CrossRefPubMedPubMedCentralGoogle Scholar
  46. Huang S-C, Ho C-T, Lin-Shiau S-Y, Lin J-K (2005) Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun. Biochem Pharmacol 69:221–232CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huang Y, Zeng F, Xu L, Zhou J, Liu X, Le H (2013) Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells. Oncol Res 20:499–507CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ivey KL, Jensen MK, Hodgson JM, Eliassen AH, Cassidy A, Rimm EB (2017) Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. Br J Nutr 117:1470–1477CrossRefPubMedPubMedCentralGoogle Scholar
  49. Javadi S, Rostamizadeh K, Hejazi J, Parsa M, Fathi M (2018) Curcumin mediated down-regulation of alphaV beta3 integrin and up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) in Erlotinib resistant SW480 colon cancer cells. Phytother Res: PTR 32:355–364CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96CrossRefPubMedPubMedCentralGoogle Scholar
  51. Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kang NJ, Lee KW, Kim BH, Bode AM, Lee H-J, Heo Y-S, Boardman L, Limburg P, Lee HJ, Dong Z (2011) Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 32:921–928CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, Hyun JW (2017) Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 51:1169–1178CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics 16:166–177CrossRefPubMedPubMedCentralGoogle Scholar
  55. Karimi Dermani F, Saidijam M, Amini R, Mahdavinezhad A, Heydari K, Najafi R (2017) Resveratrol inhibits proliferation, invasion, and epithelial-mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. J Cell Biochem 118:1547–1555CrossRefPubMedPubMedCentralGoogle Scholar
  56. Khaleel SA, Al-Abd AM, Ali AA, Abdel-Naim AB (2016) Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci Rep 6:36855CrossRefPubMedPubMedCentralGoogle Scholar
  57. Khan SG, Katiyar SK, Agarwal R, Mukhtar H (1992) Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res 52:4050–4052PubMedPubMedCentralGoogle Scholar
  58. Kim E, Coelho D, Blachier F (2013) Review of the association between meat consumption and risk of colorectal cancer. Nutr Res 33:983–994CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kim DH, Kim MJ, Sung B, Suh H, Jung JH, Chung HY, Kim ND (2017) Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells. Oncol Rep 37:281–288CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, Akao Y (2013) Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem 24:1849–1858CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136:1192–1197CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A (2005) Review: health effects of cocoa flavonoids. Food Sci Technol Int 11:159–176CrossRefGoogle Scholar
  63. Lang F, Perrotti N, Stournaras C (2010) Colorectal carcinoma cells—regulation of survival and growth by SGK1. Int J Biochem Cell Biol 42:1571–1575CrossRefPubMedPubMedCentralGoogle Scholar
  64. Langenskiold M, Holmdahl L, Falk P, Angenete E, Ivarsson ML (2008) Increased TGF-beta 1 protein expression in patients with advanced colorectal cancer. J Surg Oncol 97:409–415CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lefort EC, Blay J (2011) The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis 28:337–349CrossRefPubMedPubMedCentralGoogle Scholar
  66. Li W, Chang J, Wang S, Liu X, Peng J, Huang D, Sun M, Chen Z, Zhang W, Guo W (2015) miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 6:24448PubMedPubMedCentralGoogle Scholar
  67. Liang B, Liu Z, Cao Y, Zhu C, Zuo Y, Huang L, Wen G, Shang N, Chen Y, Yue X, Du J, Li B, Zhou B, Bu X (2017) MC37, a new mono-carbonyl curcumin analog, induces G2/M cell cycle arrest and mitochondria-mediated apoptosis in human colorectal cancer cells. Eur J Pharmacol 796:139–148CrossRefPubMedPubMedCentralGoogle Scholar
  68. Liu L, Hudgins WR, Shack S, Yin MQ, Samid D (1995) Cinnamic acid: a natural product with potential use in cancer intervention. Int J Cancer 62:345–350CrossRefPubMedPubMedCentralGoogle Scholar
  69. Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia J, Liu J, Chen N, Li M, Zhu R (2014) Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/Sphase cell cycle arrest and apoptosis through caspase/cyclinCDK pathways. Mol Med Rep 10:1697–1702CrossRefPubMedPubMedCentralGoogle Scholar
  70. Liu M-p, Liao M, Dai C, Chen J-f, Yang C-j, Liu M, Chen Z-g, Yao M-c (2016) Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Sci Rep 6:34245CrossRefPubMedPubMedCentralGoogle Scholar
  71. Liu Y, Lang T, Jin B, Chen F, Zhang Y, Beuerman RW, Zhou L, Zhang Z (2017) Luteolin inhibits colorectal cancer cell epithelial-to-mesenchymal transition by suppressing CREB1 expression revealed by comparative proteomics study. J Proteome 161:1–10CrossRefGoogle Scholar
  72. Lu Y, Shan S, Li H, Shi J, Zhang X, Li Z (2018) Reversal effects of bound polyphenol from foxtail millet bran on multidrug resistance in human HCT-8/Fu colorectal cancer cell. J Agric Food Chem 66:5190–5199CrossRefPubMedPubMedCentralGoogle Scholar
  73. Luceri C, Caderni G, Sanna A, Dolara P (2002) Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr 132:1376–1379CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ma J, Duan W, Han S, Lei J, Xu Q, Chen X, Jiang Z, Nan L, Li J, Chen K (2015) Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget 6:20993PubMedPubMedCentralGoogle Scholar
  75. Macheix JJ, Sapis JC, Fleuriet A, Lee C (1991) Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit Rev Food Sci Nutr 30:441–486CrossRefPubMedPubMedCentralGoogle Scholar
  76. Maher DM, Bell MC, O’donnell EA, Gupta BK, Jaggi M, Chauhan SC (2011) Curcumin suppresses human papillomavirus oncoproteins, restores p53, rb, and ptpn13 proteins and inhibits benzo [a] pyrene-induced upregulation of HPV E7. Mol Carcinog 50:47–57CrossRefPubMedPubMedCentralGoogle Scholar
  77. Maitan-Alfenas GP, de ALLG, de Almeida MN, Visser EM, de Rezende ST, Guimaraes VM (2014) Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free beta-glucosidase. Food Chem 146:429–436CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mazewski C, Liang K, Gonzalez de Mejia E (2018) Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. Food Chem 242:378–388CrossRefPubMedPubMedCentralGoogle Scholar
  79. Milner JA, McDonald SS, Anderson DE, Greenwald P (2001) Molecular targets for nutrients involved with cancer prevention. Nutr Cancer 41:1–16PubMedPubMedCentralGoogle Scholar
  80. Montales MT, Simmen RC, Ferreira ES, Neves VA, Simmen FA (2015) Metformin and soybean-derived bioactive molecules attenuate the expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in human colon cancer cells. Genes Nutr 10:49CrossRefPubMedPubMedCentralGoogle Scholar
  81. Moon D-O, Kim M-O, Choi YH, Kim G-Y (2008) β-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett 264:181–191CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mosialos G (1993) Gilmore TD: v-Rel and c-Rel are differentially affected by mutations at a consensus protein kinase recognition sequence. Oncogene 8:721–730PubMedPubMedCentralGoogle Scholar
  83. Murad LD, Soares Nda C, Brand C, Monteiro MC, Teodoro AJ (2015) Effects of caffeic and 5-caffeoylquinic acids on cell viability and cellular uptake in human colon adenocarcinoma cells. Nutr Cancer 67:532–542CrossRefPubMedPubMedCentralGoogle Scholar
  84. Muto S, Fujita K-i, Yamazaki Y, Kamataki T (2001) Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat Res Fundam Mol Mech Mutagen 479:197–206CrossRefGoogle Scholar
  85. Neogi P, Lakner FJ, Medicherla S, Cheng J, Dey D, Gowri M, Nag B, Sharma SD, Pickford LB, Gross C (2003) Synthesis and structure-activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg Med Chem 11:4059–4067CrossRefPubMedPubMedCentralGoogle Scholar
  86. O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:ncomms7342CrossRefGoogle Scholar
  87. Owczarek K, Hrabec E, Fichna J, Sosnowska D, Koziolkiewicz M, Szymanski J, Lewandowska U (2017) Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim Pol 64:567–576CrossRefPubMedPubMedCentralGoogle Scholar
  88. Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna A, Lanza P, Monego G, Ranelletti FO (2010) Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 31:1813–1821CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pan MH, Chang YH, Badmaev V, Nagabhushanam K, Ho CT (2007) Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem 55:7777–7785CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pan MH, Chang YH, Tsai ML, Lai CS, Ho SY, Badmaev V, Ho CT (2008) Pterostilbene suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. J Agric Food Chem 56:7502–7509CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pan MH, Chiou YS, Chen WJ, Wang JM, Badmaev V, Ho CT (2009) Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 30:1234–1242CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278CrossRefGoogle Scholar
  93. Papi A, Farabegoli F, Iori R, Orlandi M, De Nicola GR, Bagatta M, Angelino D, Gennari L, Ninfali P (2013) Vitexin-2-O-xyloside, raphasatin and (−)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem 138:1521–1530CrossRefPubMedPubMedCentralGoogle Scholar
  94. Patel BB, Gupta D, Elliott AA, Sengupta V, Yu Y, Majumdar AP (2010) Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Res 30:319–325PubMedPubMedCentralGoogle Scholar
  95. Paul S, Rimando AM, Lee HJ, Ji Y, Reddy BS, Suh N (2009) Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev Res (Phila) 2:650–657CrossRefGoogle Scholar
  96. Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N (2010) Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31:1272–1278CrossRefPubMedPubMedCentralGoogle Scholar
  97. Peng Y, Zhao B, Kang Q, Liu J, Chen C, Li B, Xie Y, Wu Q (2018) Colorectal cancer preventive effect of combined administration of phenolic acids and supercritical extracts from Angelica sinensis. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China J Chinese Materia Medica 43:1235–1240Google Scholar
  98. Petrick JL, Steck SE, Bradshaw PT, Trivers KF, Abrahamson PE, Engel LS, He K, Chow WH, Mayne ST, Risch HA, Vaughan TL, Gammon MD (2015) Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). Br J Cancer 112:1291–1300CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G (2014) Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules (Basel Switzerland) 19:9655–9674CrossRefGoogle Scholar
  100. Priego S, Feddi F, Ferrer P, Mena S, Benlloch M, Ortega A, Carretero J, Obrador E, Asensi M, Estrela JM (2008) Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol Cancer Ther 7:3330–3342CrossRefPubMedPubMedCentralGoogle Scholar
  101. Prietsch RF, Monte LG, da Silva FA, Beira FT, Del Pino FA, Campos VF, Collares T, Pinto LS, Spanevello RM, Gamaro GD, Braganhol E (2014) Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 390:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  102. Qi W, Weber CR, Wasland K, Savkovic SD (2011) Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer 11:219CrossRefPubMedPubMedCentralGoogle Scholar
  103. Qiao L, Zheng J, Jin X, Wei G, Wang G, Sun X, Li X (2017) Ginkgolic acid inhibits the invasiveness of colon cancer cells through AMPK activation. Oncol Lett 14:5831–5838CrossRefPubMedPubMedCentralGoogle Scholar
  104. Qin J, Chen JX, Zhu Z, Teng JA (2015) Genistein inhibits human colorectal cancer growth and suppresses miR-95, Akt and SGK1. Cell Physiol Biochem 35:2069–2077CrossRefPubMedPubMedCentralGoogle Scholar
  105. Qu Q, Qu J, Guo Y, Zhou BT, Zhou HH (2014) Luteolin potentiates the sensitivity of colorectal cancer cell lines to oxaliplatin through the PPARgamma/OCTN2 pathway. Anti-Cancer Drugs 25:1016–1027CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52:507–526CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ramos S, Rodríguez-Ramiro I, Martín MA, Goya L, Bravo L (2011) Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells. Toxicol In Vitro 25:1771–1781CrossRefPubMedPubMedCentralGoogle Scholar
  108. Rao V (2012) Phytochemicals-a global perspective of their role in nutrition and health. BoD–Books on Demand, NorderstedtCrossRefGoogle Scholar
  109. Reddivari L, Charepalli V, Radhakrishnan S, Vadde R, Elias RJ, Lambert JD, Vanamala JKP (2016) Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complement Altern Med 16:278–278CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rimando AM, Suh N (2008) Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 74:1635–1643CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rimando AM, Cuendet M, Desmarchelier C, Mehta RG, Pezzuto JM, Duke SO (2002) Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem 50:3453–3457CrossRefPubMedPubMedCentralGoogle Scholar
  112. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719CrossRefPubMedPubMedCentralGoogle Scholar
  113. Roy N, Narayanankutty A, Nazeem PA, Valsalan R, Babu TD, Mathew D (2016) Plant phenolics ferulic acid and P-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. Asian Pac J Cancer Prev: APJCP 17:4019–4023PubMedPubMedCentralGoogle Scholar
  114. Sebastian RS, Wilkinson Enns C, Goldman JD, Moshfegh AJ (2017) Dietary flavonoid intake is inversely associated with cardiovascular disease risk as assessed by body mass index and waist circumference among adults in the United States. Nutrients 9:827CrossRefGoogle Scholar
  115. Shao H, Jing K, Mahmoud E, Huang H, Fang X, Yu C (2013) Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther 12:2640–2650CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900PubMedPubMedCentralGoogle Scholar
  117. Sharma SH, Rajamanickam V, Nagarajan S (2018) Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem Biol Interact 291:16–28CrossRefPubMedPubMedCentralGoogle Scholar
  118. Shehzad A, Wahid F, Lee YS (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm 343:489–499CrossRefGoogle Scholar
  119. Shilpa P, Kaveri K, Salimath BP (2015) Anti-metastatic action of anacardic acid targets VEGF-induced signalling pathways in epithelial to mesenchymal transition. Drug Discov Ther 9:53–65CrossRefPubMedPubMedCentralGoogle Scholar
  120. Simental-Mendia LE, Caraglia M, Majeed M, Sahebkar A (2017) Impact of curcumin on the regulation of microRNAs in colorectal cancer. Expert Rev Gastroenterol Hepatol 11:99–101CrossRefPubMedPubMedCentralGoogle Scholar
  121. Simopoulos AP, Milner JA (2010) Personalized nutrition. Karger Medical and Scientific Publishers, BaselCrossRefGoogle Scholar
  122. Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, Lee MH, Koo JS, Jeong JB (2015) Anti-proliferative effect of Naringenin through p38-dependent downregulation of Cyclin D1 in human colorectal cancer cells. Biomol Ther 23:339–344CrossRefGoogle Scholar
  123. Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando AM, Reddy BS (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res 13:350–355CrossRefPubMedPubMedCentralGoogle Scholar
  124. Surh Y-J (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tili E, Michaille JJ (2011) Resveratrol, microRNAs, inflammation, and cancer. J Nucleic Acids 2011:102431CrossRefPubMedPubMedCentralGoogle Scholar
  126. Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol 80:2057–2065CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tomás-Barberán FA, Clifford MN (2000) Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. J Sci Food Agric 80:1024–1032CrossRefGoogle Scholar
  128. Tong W, Wang Q, Sun D, Suo J (2016) Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-kappaB, uPA activator and MMP9. Oncol Lett 12:4139–4146CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tse G, Eslick GD (2016) Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Eur J Nutr 55:63–73CrossRefPubMedPubMedCentralGoogle Scholar
  130. Velioglu Y, Mazza G, Gao L, Oomah B (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117CrossRefGoogle Scholar
  131. Wang X, Hao M-W, Dong K, Lin F, Ren J-H, Zhang H-Z (2009) Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res 32:1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  132. Wang C, Xie J, Guo J, Manning HC, Gore JC, Guo N (2012) Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol Rep 28:1301–1308CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wargovich MJ, Chen CD, Harris C, Yang E, Velasco M (1995) Inhibition of aberrant crypt growth by non-steroidal anti-inflammatory agents and differentiation agents in the rat colon. Int J Cancer 60:515–519CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wenzel U, Kuntz S, Brendel MD, Daniel H (2000) Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res 60:3823–3831PubMedPubMedCentralGoogle Scholar
  135. Willett CG, Chang DT, Czito BG, Meyer J, Wo J (2013) Cancer genome atlas network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012.(5). Int J Radiat Oncol Biol Phys 86Google Scholar
  136. Wolter F, Akoglu B, Clausnitzer A, Stein J (2001) Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J Nutr 131:2197–2203CrossRefPubMedPubMedCentralGoogle Scholar
  137. Yan GR, Xiao CL, He GW, Yin XF, Chen NP, Cao Y, He QY (2010) Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics 10:976–986PubMedPubMedCentralGoogle Scholar
  138. Yang G, Qiu J, Wang D, Tao Y, Song Y, Wang H, Tang J, Wang X, Sun YU, Yang Z, Hoffman RM (2018) Traditional Chinese medicine curcumin sensitizes human colon cancer to radiation by altering the expression of DNA repair-related genes. Anticancer Res 38:131–136PubMedPubMedCentralGoogle Scholar
  139. Yao H, Wang H, Zhang Z, Jiang BH, Luo J, Shi X (2008) Sulforaphane inhibited expression of hypoxia-inducible factor-1α in human tongue squamous cancer cells and prostate cancer cells. Int J Cancer 123:1255–1261CrossRefPubMedPubMedCentralGoogle Scholar
  140. Yeo SK, Liong MT (2010) Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int J Food Sci Nutr 61:161–181CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yeom SJ, Kim BN, Kim YS, Oh DK (2012) Hydrolysis of isoflavone glycosides by a thermostable beta-glucosidase from Pyrococcus furiosus. J Agric Food Chem 60:1535–1541CrossRefPubMedPubMedCentralGoogle Scholar
  142. Zhang C, He LJ, Ye HZ, Liu DF, Zhu YB, Miao DD, Zhang SP, Chen YY, Jia YW, Shen J, Liu XP (2018) Nrf2 is a key factor in the reversal effect of curcumin on multidrug resistance in the HCT8/5Fu human colorectal cancer cell line. Mol Med Rep 18:5409–5416PubMedPubMedCentralGoogle Scholar
  143. Zheng Q, Hirose Y, Yoshimi N, Murakami A, Koshimizu K, Ohigashi H, Sakata K, Matsumoto Y, Sayama Y, Mori H (2002) Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J Cancer Res Clin Oncol 128:539–546CrossRefPubMedPubMedCentralGoogle Scholar
  144. Zhou C, Li X, Du W, Feng Y, Kong X, Li Y, Xiao L, Zhang P (2010) Antitumor effects of ginkgolic acid in human cancer cell occur via cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Chemotherapy 56:393–402CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A (2017) Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-kappaB/slug/E-cadherin pathway. BMC Cancer 17:813CrossRefPubMedPubMedCentralGoogle Scholar
  146. Zhu B, Shang B, Li Y, Zhen Y (2016) Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol Med Rep 13:4159–4166CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zhu J, Ren J, Tang L (2018) Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Mol Med Rep 17:7265–7273PubMedPubMedCentralGoogle Scholar
  148. Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang C, Lin L, Kong AN (2018) The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 119:9573–9582CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Begum Dariya
    • 1
  • Balney Rajitha
    • 1
  • Afroz Alam
    • 1
  • Ganji Purnachandra Nagaraju
    • 2
    Email author
  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityVanasthaliIndia
  2. 2.Department of Hematology and Medical OncologyWinship Cancer Institute, Emory UniversityAtlantaUSA

Personalised recommendations