Role of Phytochemicals in Cancer Cell Metabolism Regulation

  • Abhijeet Kumar
  • Anil Kumar Singh
  • Mukul Kumar Gautam
  • Garima Tripathi


The alteration in cellular metabolism whereby cancer cell meets the demand of bioenergetics, biosynthesis, and redox status to support their uncontrolled cell proliferation, growth, tumor progression, and metastasis is considered as a prominent hallmark of cancer. Warburg effect is the most commonly noticed consequence of these metabolic reprogramming which aggravate cancer cell to opt for glycolytic pathway over more efficient oxidative phosphorylation even under normoxic condition to generate lactate, as well as intermediates for lipid, nucleotide, amino acids synthesis, which are essential to maintain tumorigenesis and cancer progression. In order to develop efficient chemotherapeutic drug, various enzymes and proteins involved or associated with glycolytic pathways such as PMK2, LDHA and signaling pathways such as PKI3-Akt-mTOR are being targeted to inhibit various stages of cancer progression. In that direction, phytochemicals that are bioactive compounds obtained from plant sources have displayed promising results in hampering the growth of various cancer cell lines. Compounds of flavonoid class such as quercetin and fisetin along with other polyphenols and non-flavonoids such as resveratrol, isothiocyanates, and curcumin have displayed remarkable inhibitory effect on cancer cell metabolism. Overall, this chapter will highlight the effect of different phytochemicals on the metabolic pathways of cancer cells to inhibit various stages of cancer progression.


Phytochemicals Polyphenol Metabolism 


  1. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Busselberg D (2018) Flavonoids in cancer and apoptosis. Cancers 11(1):28CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, Snyder JP, Liotta DC, Jones DP, Shoji M (2005) EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16(3):263CrossRefGoogle Scholar
  3. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59CrossRefGoogle Scholar
  4. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95CrossRefGoogle Scholar
  5. Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Roy M (2006) Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res 596(1):81–90CrossRefGoogle Scholar
  6. Chaneton B, Gottlieb E (2012) Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci 37:309–316CrossRefGoogle Scholar
  7. Chaudhary LR, Hruska KA (2003) Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89(1):1–5CrossRefGoogle Scholar
  8. Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T (2018) Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int J Mol Sci 19(11):3568CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25(11):2183–2189CrossRefGoogle Scholar
  10. Conaway CC, Jiao D, Chung FL (1996) Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: a structure-activity relationship study. Carcinogenesis 17(11):2423–2427CrossRefGoogle Scholar
  11. Dashwood RH, Ho E (2008) Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev 66(Suppl 1):S36–S38CrossRefPubMedPubMedCentralGoogle Scholar
  12. Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW (2017) Polyphenolic phytochemicals in cancer prevention and therapy: bioavailability versus bioefficacy. J Med Chem 60(23):9413–9436CrossRefGoogle Scholar
  13. Faber AC, Dufort FJ, Blair D, Wagner D, Roberts MF, Chiles TC (2006) Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochem Pharmacol 72(10):1246–1256Google Scholar
  14. Fimognari C, Lenzi M, Hrelia P (2008a) Chemoprevention of cancer by isothiocyanates and anthocyanins: mechanisms of action and structure-activity relationship. Curr Med Chem 15(5):440–447CrossRefGoogle Scholar
  15. Fimognari C, Lenzi M, Hrelia P (2008b) Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: pharmacological and toxicological implications. Curr Drug Metab 9(7):668–678CrossRefGoogle Scholar
  16. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114(9):4960–4992CrossRefGoogle Scholar
  17. Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7(8):1318–1350CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hamilton KE, Rekman JF, Gunnink LK, Busscher BM, Scott JL, Tidball AM, Stehouwer NR, Johnecheck GN, Looyenga BD, Louters LL (2018) Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 151:107–114CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hasegawa T, Nishino H, Iwashima A (1993) Isothiocyanates inhibit cell cycle progression of HeLa cells at G2/M phase. Anticancer Drugs 4(2):273–279CrossRefGoogle Scholar
  20. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16(10):635–649CrossRefPubMedPubMedCentralGoogle Scholar
  21. He G, Feng C, Vinothkumar R, Chen W, Dai X, Chen X, Ye Q, Qiu C, Zhou H, Wang Y, Liang G, Xie Y, Wu W (2016) Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother Pharmacol 78(6):1151–1161CrossRefGoogle Scholar
  22. Hecht SS (1995) Chemoprevention by isothiocyanates. J Cell Biochem 59(S22):195–209CrossRefGoogle Scholar
  23. Hosseini A, Ghorbani A (2015) Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 5(2):84–97PubMedPubMedCentralGoogle Scholar
  24. Jiao D, Eklind KI, Choi CI, Desai DH, Amin SG, Chung FL (1994) Structure-activity relationships of isothiocyanates as mechanism-based inhibitors of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. Cancer Res 54(16):4327–4333PubMedGoogle Scholar
  25. Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomol Ther 9(5):174Google Scholar
  26. Kocyigit A, Guler E (2017) Curcumin induce DNA damage and apoptosis through generation of reactive oxygen species and reducing mitochondrial membrane potential in melanoma cancer cells. Cell Mol Biol 63:97CrossRefGoogle Scholar
  27. Kuang YF, Chen YH (2004) Induction of apoptosis in a non-small cell human lung cancer cell line by isothiocyanates is associated with P53 and P21. Food Chem Toxicol 42(10):1711–1718CrossRefGoogle Scholar
  28. Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T, Hirose M (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241(2):275–280CrossRefGoogle Scholar
  29. Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY (2018) Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep 8(1):2039CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liang H, Lai B, Yuan Q (2008) Sulforaphane induces cell-cycle arrest and apoptosis in cultured human lung adenocarcinoma LTEP-A2 cells and retards growth of LTEP-A2 xenografts in vivo. J Nat Prod 71(11):1911–1914CrossRefGoogle Scholar
  31. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218CrossRefPubMedPubMedCentralGoogle Scholar
  32. LoTempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES, Wang MB (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11(19):6994CrossRefPubMedPubMedCentralGoogle Scholar
  33. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087CrossRefGoogle Scholar
  34. Martín-Cordero C, López-Lázaro M, Gálvez M, Ayuso MJ (2003) Curcumin as a DNA topoisomerase II poison. J Enzyme Inhib Med Chem 18(6):505–509CrossRefPubMedPubMedCentralGoogle Scholar
  35. Matsui TA, Murata H, Sakabe T, Sowa Y, Horie N, Nakanishi R, Sakai T, Kubo T (2007) Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol Rep 18:1263–1268PubMedGoogle Scholar
  36. Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) Benzyl isothiocyanate modifies expression of the G2/M arrest-related genes. Biofactors 21(1GÇÉ4):23–26CrossRefPubMedPubMedCentralGoogle Scholar
  37. Morse MA, Amin SG, Hecht SS, Chung FL (1989) Effects of aromatic isothiocyanates on tumorigenicity, O6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res 49(11):2894PubMedGoogle Scholar
  38. Morse MA, Eklind KI, Amin SG, Hecht SS, Chung FL (1989) Effects of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis 10(9):1757–1759CrossRefPubMedPubMedCentralGoogle Scholar
  39. Morse MA, Eklind KI, Hecht SS, Jordan KG, Choi CI, Desai DH, Amin SG, Chung FL (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51(7):1846PubMedGoogle Scholar
  40. Morse MA, Zu H, Galati AJ, Schmidt CJ, Stoner GD (1993) Dose-related inhibition by dietary phenethyl isothiocyanate of esophageal tumorigenesis and DNA methylation induced by N-nitrosomethylbenzylamine in rats. Cancer Lett 72(1):103–110CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609CrossRefGoogle Scholar
  42. Ngo H, Tortorella SM, Ververis K, Karagiannis TC (2015) The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 42(4):825–834CrossRefGoogle Scholar
  43. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  44. Prakasam G, Iqbal MA, Bamezai RNK, Mazurek S (2018) Posttranslational modifications of pyruvate kinase M2: tweaks that benefit cancer. Front Oncol 8:22CrossRefPubMedPubMedCentralGoogle Scholar
  45. Reyes-Farias M, Carrasco-Pozo C (2019) The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int JMol Sci 20(13):3177CrossRefGoogle Scholar
  46. Rivera Rivera A, Castillo-Pichardo L, Gerena Y, Dharmawardhane S (2016) Anti-breast cancer potential of quercetin via the Akt/AMPK/mammalian target of rapamycin (mTOR) signaling cascade. PLoS One 11(6):e0157251CrossRefPubMedPubMedCentralGoogle Scholar
  47. Russo M, Spagnuolo C, Tedesco I, Russo GL (2010) Phytochemicals in cancer prevention and therapy: truth or dare? Toxins 2(4):517–551CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, Longacre M (2013) Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 14(10):21087–21113CrossRefPubMedPubMedCentralGoogle Scholar
  49. Satyan KS, Swamy N, Dizon DS, Singh R, Granai CO, Brard L (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 103(1):261–270 CrossRefGoogle Scholar
  50. Saunier E, Antonio S, Regazzetti A, Auzeil N, Laprévote O, Shay JW, Coumoul X, Barouki R, Benelli C, Huc L, Bortoli S (2017) Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep 7(1):6945CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schmitz ML, Mattioli I, Buss H, Kracht M (2004) NF-κB: a multifaceted transcription factor regulated at several levels. Chembiochem 5(10):1348–1358CrossRefGoogle Scholar
  52. Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4):a006098CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968CrossRefGoogle Scholar
  54. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056(1):206–217CrossRefGoogle Scholar
  55. Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RNK, Husain M, Ali SM, Iqbal MA (2018) Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep 8(1):8323CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singh KB, Hahm ER, Rigatti LH, Normolle DP, Yuan JM, Singh SV (2018) Inhibition of glycolysis in prostate cancer chemoprevention by phenethyl isothiocyanate. Cancer Prev Res (Phila) 11(6):337–346CrossRefGoogle Scholar
  57. Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203CrossRefPubMedPubMedCentralGoogle Scholar
  58. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6(1):24049CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sundarraj K, Raghunath A, Perumal E (2018) A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother 97:928–940CrossRefGoogle Scholar
  60. Syng-ai C, Kumari AL, Khar A (2004) Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3(9):1101PubMedGoogle Scholar
  61. Talalay P, Zhang Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24(3):806–810CrossRefGoogle Scholar
  62. Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y, Chen Z, Pelicano H, Plunkett W, Wierda WG, Keating MJ, Huang P (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112(5):1912–1922CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vaupel P, Schmidberger H, Mayer A (2019) The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95(7):912–919CrossRefGoogle Scholar
  64. Virtanen AI, Kreula M, Kies-vaara M (1963) Investigations on the alleged goitrogenic properties of milk. Z Ernahrungswiss 3:23–37Google Scholar
  65. Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH, Kong ANT (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305CrossRefGoogle Scholar
  66. Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58(2):395–398CrossRefGoogle Scholar
  67. Wattenberg LW (1987) Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8(12):1971–1973CrossRefGoogle Scholar
  68. Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67(5):2239–2246CrossRefGoogle Scholar
  69. Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 24(5):891–897CrossRefGoogle Scholar
  70. Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong ANT (2005) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 27(3):437–445CrossRefGoogle Scholar
  71. Xu K, Thornalley PJ (2001) Signal transduction activated by the cancer chemopreventive isothiocyanates: cleavage of BID protein, tyrosine phosphorylation and activation of JNK. Br J Cancer 84(5):670–673CrossRefPubMedPubMedCentralGoogle Scholar
  72. Xu K, Thornalley PJ (2000) Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro. Biochem Pharmacol 60(2):221–231CrossRefGoogle Scholar
  73. Yu R, Mandlekar S, Harvey KJ, Ucker DS, Kong ANT (1998) Chemopreventive isothiocyanates induce apoptosis and caspase-3-like protease activity. Cancer Res 58(3):402PubMedGoogle Scholar
  74. Zhang R, Loganathan S, Humphreys I, Srivastava SK (2006) Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr 136(11):2728–2734CrossRefGoogle Scholar
  75. Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54(7 Suppl):1976sPubMedPubMedCentralGoogle Scholar
  76. Zhang Y, Tang L, Gonzalez V (2003) Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther 2(10):1045PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Abhijeet Kumar
    • 1
  • Anil Kumar Singh
    • 1
  • Mukul Kumar Gautam
    • 2
  • Garima Tripathi
    • 3
  1. 1.Department of Chemistry, School of Physical SciencesMahatma Gandhi Central UniversityMotihariIndia
  2. 2.Buddha Institute of Dental Sciences and HospitalPatnaIndia
  3. 3.Department of Chemistry, T.N.B. CollegeTMBUBhagalpurIndia

Personalised recommendations