Topology and Performance Modeling of Robotic Mechanism

  • Tao SunEmail author
  • Shuofei Yang
  • Binbin Lian
Part of the Springer Tracts in Mechanical Engineering book series (STME)


Topology of a robotic mechanism [1], describing the arrangement of joints including number, sequence, type, and axis (or direction), denotes the basic mechanical structure of the robotic mechanism [2]. Topology determines motion capability thus directly affects the kinematic, stiffness, and dynamic performance of the robotic mechanism [3, 4, 5].


  1. 1.
    Sun T, Song YM, Gao H et al (2015) Topology synthesis of a 1-translational and 3-rotational parallel manipulator with an articulated traveling plate. J Mech Robot Trans ASME 7(3):031015(9 pages)Google Scholar
  2. 2.
    Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145CrossRefGoogle Scholar
  3. 3.
    Gosselin CM (2002) Stiffness mapping for parallel manipulators. IEEE Trans Robot Autom 6(3):377–382CrossRefGoogle Scholar
  4. 4.
    Merlet JP (1993) Direct kinematics of parallel manipulators. IEEE Trans Robot Autom 9(6):842–846CrossRefGoogle Scholar
  5. 5.
    Gallardo J, Rico JM, Frisoli A et al (2003) Dynamics of parallel manipulators by means of screw theory. Mech Mach Theory 38(11):1113–1131MathSciNetCrossRefGoogle Scholar
  6. 6.
    Qi Y, Sun T, Song YM et al (2015) Topology synthesis of three-legged spherical parallel manipulators employing Lie group theory. Proc Inst Mech Eng Part C J Mech Eng Sci 229(10):1873–1886CrossRefGoogle Scholar
  7. 7.
    Yang SF, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419CrossRefGoogle Scholar
  8. 8.
    Yang SF, Sun T, Huang T et al (2017) Type synthesis of parallel mechanisms having 3T1R motion with variable rotational axis. Mech Mach Theory 109:220–230CrossRefGoogle Scholar
  9. 9.
    Sun T, Huo XM (2018) Type synthesis of 1T2R parallel mechanisms with parasitic motions. Mech Mach Theory 128:412–428CrossRefGoogle Scholar
  10. 10.
    Sun T, Song YM, Li YG et al (2010) Workspace decomposition based dimensional synthesis of a novel hybrid reconfigurable robot. J Mech Robot Trans ASME 2(3):031009(8 pages)Google Scholar
  11. 11.
    Sun T, Song YM, Dong G et al (2012) Optimal design of a parallel mechanism with three rotational degrees of freedom. Robot Comput Integr Manuf 28(4):500–508CrossRefGoogle Scholar
  12. 12.
    Lian BB, Sun T, Song YM et al (2015) Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects. Int J Mach Tools Manuf 95:82–96CrossRefGoogle Scholar
  13. 13.
    Sun T, Liang D, Song YM Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans Ind Electron 65(4):3326–3336CrossRefGoogle Scholar
  14. 14.
    Sun T, Lian BB, Song YM et al (2019) Elasto-dynamic optimization of a 5-DoF parallel kinematic machine considering parameter uncertainty. IEEE-ASME Trans Mechatron 24(1):315–325CrossRefGoogle Scholar
  15. 15.
    Sun T, Yang SF, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82CrossRefGoogle Scholar
  16. 16.
    Sun T, Yang SF, Huang T et al (2018) A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chin J Mech Eng 31(2):66–75Google Scholar
  17. 17.
    Sun T, Yang SF (2019) An approach to formulate the Hessian matrix for dynamic control of parallel robots. IEEE-ASME Trans Mechatron 24(1):271–281CrossRefGoogle Scholar
  18. 18.
    Kong XW, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, Berlin, HeidelbergzbMATHGoogle Scholar
  19. 19.
    Hunt KH (1978) Kinematic geometry of mechanisms. Clarendon Press, OxfordzbMATHGoogle Scholar
  20. 20.
    Angeles J (2014) Fundamentals of robotic mechanical systems: Theory, Methods, and Algorithms, 4th edn. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations