Advertisement

Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes

  • Narendra Kumar
  • Amit Kumar
  • Neha Jeena
  • Ranjeet Singh
  • Hukum Singh
Chapter
  • 32 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Healthy soil ecosystem is a prerequisite for better agricultural productivity, which is governed by various local abiotic and biotic factors. Agricultural system at higher altitudes has unique characteristics and is entirely distinct from that at the lower altitude. The abiotic and biotic factors are the drivers of the soil ecosystem processes and functioning which improve plant growth and development, ultimately productivity. The key abiotic factors at higher altitudes consist of temperature, precipitation/rainfall pattern, wind profile, light intensity and duration, physiographic, etc.; and the key biotic factors are soil fauna and flora (microbes, fungi, protozoa, nematodes, etc.) influencing the soil ecosystem and agricultural productivity. These major biotic and abiotic factors interact with each other and influence the local agricultural system at higher altitude. The abiotic factors manipulate the microenvironment of soil microbial communities which eventually influence the activity of soil fauna and flora in the soil ecosystem that determines plant growth, resulting in agricultural productivity. Due to the course of these factors, decomposition pattern and rate in the ecosystem are altered, and the decomposition pattern/rate of crop residue has released the nutrients in the soil ecosystem which further are utilized by soil microbes and plants as the source of energy, resulting in increased soil productivity. In this perspective, this chapter explores the mystery of interrelationship of soil ecosystem functioning and various factors that govern the systematic agricultural productivity.

Keywords

Soil ecosystem High altitude Agriculture Abiotic stress Soil microbial communities 

References

  1. Anders AM, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen, J (2006) Spatial patterns of precipitation and topography in the Himalaya. Geological Society of America special paper 398, pp. 39–53Google Scholar
  2. Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 189–208CrossRefGoogle Scholar
  3. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387CrossRefGoogle Scholar
  4. Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33:L08405Google Scholar
  5. Breznak J (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 209–231CrossRefGoogle Scholar
  6. Brussaard L, Aanen DK, Briones MJI, Decaens T, De Deyn GB, Fayle TM, James SW, Nobre T (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 201–232CrossRefGoogle Scholar
  7. Calderon-Cortes N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst 43:45–71CrossRefGoogle Scholar
  8. Cobo JG, Barrios E, Kass DCL, Thomas RJ (2002) Decomposition and nutrient release by green manure in a tropical hillside agro-ecosystem. Plant Soil 240:331–342CrossRefGoogle Scholar
  9. Coleman DC, Wall DH (2015) Soil fauna: occurrence, biodiversity, and roles in ecosystem function. In: Soil microbiology, ecology, and biochemistry, pp. 111–149CrossRefGoogle Scholar
  10. Coleman DC, Gupta VV, Moore JC (2012) Soil ecology and agroecosystem studies. In: Microbial ecology in sustainable agroecosystems, pp. 1–21Google Scholar
  11. Daly E, Porporato A (2005) A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ Eng Sci 22:9–24CrossRefGoogle Scholar
  12. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868CrossRefGoogle Scholar
  14. Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11CrossRefGoogle Scholar
  15. Ferris H, Venette RC, Van Der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203(2):159–171CrossRefGoogle Scholar
  16. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631PubMedCrossRefGoogle Scholar
  17. Fischer G, Sun L (2001) Model-based analysis of future land-use development in China. Agric Ecosyst Environ 85:163–176CrossRefGoogle Scholar
  18. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390CrossRefGoogle Scholar
  19. Garcıa-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall decomposition. Plant Physiol 153:444–455PubMedPubMedCentralCrossRefGoogle Scholar
  21. Giller KE, Beare MH, Lavelle P, Izac AM, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6(1):3–16CrossRefGoogle Scholar
  22. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654PubMedCrossRefPubMedCentralGoogle Scholar
  23. Istanbulluoglu E, Bras RL (2006) On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resour Res 42:W06418CrossRefGoogle Scholar
  24. Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Rombke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. Kluwer Academic, Dordrecht, pp 61–80Google Scholar
  25. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954PubMedCrossRefGoogle Scholar
  26. Li Y, Yang X, Cai H, Xiao L, Xu X, Luo L (2014) Topographical characteristics of agricultural potential productivity during cropland transformation in China. Sustainability 7:96–110CrossRefGoogle Scholar
  27. Lupwayi NZ, Clayton GW, Odonovan JT, Harker KN, Turkington TK, Soon YK (2007) Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil Tillage Res 95:231–239CrossRefGoogle Scholar
  28. Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97CrossRefGoogle Scholar
  29. Matos ES, Mendonça ES, Lima PC, Coelho MS, Mateus RF, Cardoso IM (2008) Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Rev Bras Ciênc Solo 32:2027–2035CrossRefGoogle Scholar
  30. Mendonca ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in southeastern Brazil. Agrofor Syst 57:117–125CrossRefGoogle Scholar
  31. Miehe G, Pendry CA, Chaudhary RP (2015) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden, EdinburghGoogle Scholar
  32. Moore JC, De Ruiter PC (2012) Soil food webs in agricultural ecosystems. In: Microbial ecology of sustainable agroecosystems, CRC Press, Boca Raton, pp. 63–88CrossRefGoogle Scholar
  33. Mukuralinda A, Tenywa JS, Verchot L, Obua J, Namirembe S (2009) Decomposition and phosphorus release of agroforestry shrub residues and the effect on maize yield in acidic soils of Rubona, Southern Rwanda. Nutr Cycl Agroecosyst 84:155–166CrossRefGoogle Scholar
  34. Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33(4):161PubMedPubMedCentralGoogle Scholar
  35. Ngugi DK, Brune A (2012) Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14:860–871PubMedCrossRefGoogle Scholar
  36. Oliveira AO, Muzzi MRS, Purcino HA, Marriel IE, Sa NMH (2003) Decomposition of Arachispintoi and Hyparrheniarufa litters in monoculture and intercropped systems under lowland soil. Pesq Agropec Bras 38:1089–1095CrossRefGoogle Scholar
  37. Rawat DS, Kharwal AD (2016) Folk knowledge on indigenous practices in North-West Himalaya with special reference to Himachal Pradesh (H.P.), India. Int J Adv Sci Res 8:6–12Google Scholar
  38. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53PubMedCrossRefGoogle Scholar
  39. Robertson FA, Morgan WC (1996) Effects of management history and legume green manure on soil microrganisms under organic vegetable production. Aust J Soil Res 34:427–440CrossRefGoogle Scholar
  40. Roe GH, Montgomery DR, Hallet B (2003) Orographic precipitation and the relief of mountain ranges. J Geophys Res 108:2315CrossRefGoogle Scholar
  41. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290PubMedPubMedCentralCrossRefGoogle Scholar
  42. Scharroba A, Dibbern D, Hunninghaus M, Kramer S, Moll J, Butenschoen O, Bonkowski M, Buscot F, Kandeler E, Koller R, Kruge D, Lueders T, Scheu S, Ruess L (2012) Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol Biochem 50:1–11CrossRefGoogle Scholar
  43. Sharma PD (2004) Managing natural resources in Indian Himalayas. J Indian Soc Soil Sci 52(4):314–331Google Scholar
  44. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779PubMedCrossRefGoogle Scholar
  45. Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS (2014) Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat Clim Change 4(6):456–461CrossRefGoogle Scholar
  46. Singh SP, Singh R, Gumber S, Bhatt S (2017) Two principal precipitation regimes in Himalayas and their influence on tree distribution. Trop Ecol 58:679–691Google Scholar
  47. Stenburg M, Shoshny M (2001) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16(2):335–345CrossRefGoogle Scholar
  48. Středová H, Spáčilová B, Podhrázská J, Chuchma F (2015) A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils. Mor Geog Rep 23:56–62Google Scholar
  49. Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1998) Principles and applications of soil microbiology. Prentice-Hall, Upper Saddle River, NJ, p 550Google Scholar
  50. Thonnissen C, Midmore DJ, Ladha JK, Olk DC, Schmidhalter U (2000) Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron J 92:253–260CrossRefGoogle Scholar
  51. Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123:131–142CrossRefGoogle Scholar
  52. Van Pelt RS, Zobeck TM, Baddock MC, Cox JJ (2010) Design, construction, and calibration of a portable boundary layer wind tunnel for field use. Am Soc Agric Biol Eng 53:1413–1422Google Scholar
  53. Wang C, Zhao CY, Xu ZL, Wang Y, Peng HH (2013) Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J Arid Land 5(2):207–219CrossRefGoogle Scholar
  54. Wang J, Cao P, Hu H, Li J, Han L (2014) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegylaon the Tibetan Plateau. Microb Ecol 69:135–145PubMedCrossRefGoogle Scholar
  55. Williams CJ, Mcnamara JP, Chandler DG (2009) Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrol Earth Syst Sci 13(7):1325–1336CrossRefGoogle Scholar
  56. Yan P, Shen C, Fan L, Li X, Zhang L, Zhang L, Han W (2018) Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric Ecosyst Environ 254:20–25CrossRefGoogle Scholar
  57. Zaharah AR, Bah AR (1999) Patterns of decomposition and nutrient release by fresh Gliciridia (Gliciridiasepium) leaves in an Ultisol. Nutr Cycl Agroecosyst 55:269–277CrossRefGoogle Scholar
  58. Zhu JJ, Liu ZG, Li XF, Takeshi M, Yutaka G (2004) Review: effects of wind on trees. J For Res 15:153–160CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Amit Kumar
    • 1
  • Neha Jeena
    • 2
  • Ranjeet Singh
    • 1
  • Hukum Singh
    • 1
  1. 1.Forest Ecology and Climate Change DivisionFRIDehradunIndia
  2. 2.Department of BiotechnologyBhimtal Campus Kumaun UniversityNainitalIndia

Personalised recommendations