Advertisement

Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges

  • Prity Kushwaha
  • Prem Lal Kashyap
  • Pandiyan Kuppusamy
Chapter
  • 36 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Cold stress (CS) is one of the major hindrances for quality crop production and global food security. Under cold environment, different kinds of alterations in the biochemical, physiological, and molecular processes of plants have been observed. Hence, it becomes mandatory to develop eco-compatible, sustainable, and economically sound options for ensuring quality food grain production of high mountainous regions. The use of cold-tolerant microbes (CTM) enhances growth of agricultural crops under low temperature environment. Additionally, it provides an economically captivating and environment-friendly means for protecting agricultural crops from cold stress injuries. They can also trigger crop growth by improving nutrition acquisition, regulating release of plant hormone and siderophores in addition to the activation of antioxidant system under low temperature conditions. As a result, this plant–CTM interaction under cold environment is vital and CTMs may act as a principal cold stress engineer to answer global agricultural tribulations of high altitude. In this chapter, attempts have been made to explore about CTM and their mechanism of action to boost agricultural production in sustainable manner under low temperature environment.

Keywords

Agriculture Cold Microbes Stress Sustainability Temperature 

References

  1. Abdel Latef AAH, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225CrossRefGoogle Scholar
  2. Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585PubMedCrossRefGoogle Scholar
  4. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173(4):808–816PubMedCrossRefGoogle Scholar
  5. Awasthi S, Sharma A, Saxena P, Yadav J, Pandiyan K, Kumar M, Singh A, Chakdar H, Bhowmik A, Kashyap PL, Srivastava AK, Saxena AK (2019) Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis. J Plant Biochem Biotechnol 28:405–413.  https://doi.org/10.1007/s13562-019-00500-8 CrossRefGoogle Scholar
  6. Baldi P, Pedron L, Hietala AM, Porta NL (2011) Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genet Genomes 7(1):79–90CrossRefGoogle Scholar
  7. Berríos G, Cabrera G, Gidekel M, Gutiérrez-Moraga A (2012) Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia Antarctica Desv). Polar Biol 36(3):349–352CrossRefGoogle Scholar
  8. Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195(9):605–605PubMedCrossRefGoogle Scholar
  9. Chen S, Jin W, Liu A et al (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229CrossRefGoogle Scholar
  10. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918PubMedCrossRefGoogle Scholar
  11. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451PubMedCrossRefGoogle Scholar
  12. Chu XT, Fu JJ, Sun YF, Xu YM, Miao YJ, Xu YF, Hu TM (2016) Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. S Afr J Bot 104:21–29CrossRefGoogle Scholar
  13. Cruz R, Milach S (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8CrossRefGoogle Scholar
  14. Das K, Katiyar V, Goel R (2004) ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362PubMedCrossRefGoogle Scholar
  15. Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35(7):973–978CrossRefGoogle Scholar
  16. Ek-Jander J, Fahraëus G (1971) Adaptation of rhizobia to subarctic environment in Scandinavia. Plant Soil Spec 35:129–137CrossRefGoogle Scholar
  17. Erdal S (2012) Androsteron—induced molecular and physiological changes in maize seedlings in repose to chilling stress. Plant Physiol Biochem 57:1–7PubMedCrossRefGoogle Scholar
  18. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208PubMedCrossRefGoogle Scholar
  19. Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236(2):355–369PubMedCrossRefGoogle Scholar
  20. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gautam N, Sharma P, Rana JC, Singh M (2019) Plant growth promoting traits of a novel psychrotrophic bacterium Virdibacillus arenosi PH15 isolated from rhizosphere of Podophyllum hexandrum Royle. Acad J Med Plants 7(1):013–019Google Scholar
  22. Ghadirnezhad R, Fallah A (2014) Temperature effect on yield and yield components of different rice cultivars in flowering stage. Int J Agron 2014:4CrossRefGoogle Scholar
  23. Ghildiyal A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian himalayan region. Res J Microbiol 3:559–564CrossRefGoogle Scholar
  24. Gianinazzi-Pearson V, Gollotte A, Tisserant B et al (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:526–532CrossRefGoogle Scholar
  25. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377PubMedCrossRefGoogle Scholar
  27. Hume DJ, Shelp BJ (1990) Superior performance of the Hup- x strain 532C in Ontario soybean field trials. Can J Plant Sci 70:661–666CrossRefGoogle Scholar
  28. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393PubMedPubMedCentralCrossRefGoogle Scholar
  29. Johnson LF, Bernard EC, Qian P (1987) Isolation of Trichoderma spp. at low temperatures from Tennessee and Alaska soils. Plant Dis 71:137–140CrossRefGoogle Scholar
  30. Junior MAL, Lima AST, Arruda JRF, Smith DL (2005) Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem 37:235–239CrossRefGoogle Scholar
  31. Kang HM, Saltveit ME (2002) Chilling tolerance of maize cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576.  https://doi.org/10.1034/j.1399-3054.2002.1150411.x CrossRefPubMedGoogle Scholar
  32. Kang SM, Khan AL, Waqas M, You YH (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annum L. Eur J Soil Biol 68:85–93CrossRefGoogle Scholar
  33. Karabudak T, Bor M, Özdemir F, Türkan İ (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 41(3):1401–1410PubMedCrossRefGoogle Scholar
  34. Kashyap PL, Rai P, Kumar R, Sharma S, Jasrotia P, Srivastava AK, Kumar S (2018) Microbial nanotechnology for climate resilient agriculture. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 279–344CrossRefGoogle Scholar
  35. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291PubMedCrossRefGoogle Scholar
  36. Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244CrossRefGoogle Scholar
  37. Kaushik R, Saxena AK, Tilak KVBR (2001) Selection and evaluation of Azospirillum brasilense strains growing at a sub-optimum temperature in rhizocoenosis with wheat. Folia Microbiol 46:327–332CrossRefGoogle Scholar
  38. Kim HS, Oh JM, Luan S (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H+- ATPase of camelina and rapeseed. J Plant Physiol 170:828–837PubMedCrossRefGoogle Scholar
  39. Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I. Watermelon. J Am Soc Hortic Sci 126:404–409CrossRefGoogle Scholar
  40. Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol Res 8(50):3931–3943Google Scholar
  41. Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41(8):1035–1046CrossRefGoogle Scholar
  42. Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):e0213844PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kytöviita MM, Ruotsalainen AL (2007) Mycorrhizal benefit in two low Arctic herbs increases with increasing temperature. Am J Bot 94(8):1309–1315PubMedCrossRefGoogle Scholar
  44. Larcher W (2001) Ökophysiologie der Pfl anzen, 6th edn. Eugen Ulmer, Stuttgart, p 204Google Scholar
  45. Li XN, Pu HC, Liu FL, Zhou Q, Cai J, Dai TB (2015) Winter wheat photosynthesis and grain yield responses to spring freeze. Agron J 107:1002–1010.  https://doi.org/10.2134/agronj14.0460 CrossRefGoogle Scholar
  46. Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJ (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 8(2):e57750PubMedPubMedCentralCrossRefGoogle Scholar
  47. Liu A, Chen S, Chang R et al (2014a) Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. J Plant Res 127:775–785PubMedCrossRefGoogle Scholar
  48. Liu ZL, Ma LN, He XY et al (2014b) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191CrossRefGoogle Scholar
  49. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefGoogle Scholar
  50. Malviya MK, Pandey A, Trivedi P, Gupta G (2009) Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian himalaya. Curr Microbiol 59:502–508PubMedCrossRefGoogle Scholar
  51. Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537PubMedPubMedCentralCrossRefGoogle Scholar
  52. Matsubara Y, Hirano I, Sassa D (2004) Alleviation of high temperature stress in strawberry plants infected with arbuscular mycorrhizal fungi. Environ Control Biol 42(2):105–111CrossRefGoogle Scholar
  53. McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165Google Scholar
  54. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811CrossRefGoogle Scholar
  55. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58(4):561–568CrossRefGoogle Scholar
  56. Mishra PK, Mishra S, Bisht SC, Selvakumar G (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalaya. Biol Res 42(3):305–313PubMedCrossRefGoogle Scholar
  57. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513PubMedCrossRefGoogle Scholar
  58. Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7:321–331PubMedPubMedCentralGoogle Scholar
  59. Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. In: Morita RY (ed) Encyclopedia of life sciences. Wiley, Chichester, pp 1–6Google Scholar
  60. Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–48CrossRefGoogle Scholar
  61. Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156Google Scholar
  62. Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330PubMedCrossRefGoogle Scholar
  63. Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460Google Scholar
  64. Pandey A, Trivedi P, Kumar B, Palni LM (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53(2):102–107PubMedCrossRefGoogle Scholar
  65. Patni B, Panwar AS, Negi P, Joshi GK (2018) Plant growth promoting traits of psychrotolerant bacteria: a boon for agriculture in hilly terrains. Plant Sci Today 5(1):24–28CrossRefGoogle Scholar
  66. Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152PubMedCrossRefGoogle Scholar
  67. Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  68. Prevost D, Antoun H, Bordeleau LM (1987) Effects of low temperature on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by arctic rhizobia. FEMS Microbiol Ecol 45:205–210CrossRefGoogle Scholar
  69. Prevost D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Biotechnological applications of cold-adapted organisms, pp 161–176CrossRefGoogle Scholar
  70. Prevost D, Drouin P, Laberge S, Bertrad A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81(12):1153–1161CrossRefGoogle Scholar
  71. Qin Y, Fu Y, Kanga W, Li H, Gao H, Vitalievitch KS, Liu H (2017) Isolation and identification of a cold-adapted bacterium and its characterization for biocontrol and plant growth-promoting activity. Ecol Eng 105:362–369CrossRefGoogle Scholar
  72. Rai AK, Kumar R (2015) Potential of microbial bio-resources of Sikkim Himalayan region. ENVIS Bull Himalayan Ecol 23:99–105Google Scholar
  73. Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12(1):143–157CrossRefGoogle Scholar
  74. Rinu K, Pandey A (2011) Slow and steady phosphate solubilisation by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27:1055–1062CrossRefGoogle Scholar
  75. Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177) a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417PubMedCrossRefGoogle Scholar
  76. Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signaling and cold acclimation in plants. Adv Bot Res 49:35–150CrossRefGoogle Scholar
  77. Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438PubMedPubMedCentralCrossRefGoogle Scholar
  78. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648PubMedCrossRefGoogle Scholar
  79. Sati P, Dhakar K, Pandey A (2013) Microbial diversity in soil under potato cultivation from Cold Desert Himalaya, India. ISRN Biodiversity 2013:9.  https://doi.org/10.1155/2013/767453 CrossRefGoogle Scholar
  80. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960CrossRefGoogle Scholar
  81. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175PubMedCrossRefGoogle Scholar
  82. Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245CrossRefGoogle Scholar
  83. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50(1):50–56PubMedCrossRefGoogle Scholar
  84. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27(5):1129–1135CrossRefGoogle Scholar
  85. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[W][OA]. Plant Cell 24(6):2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  86. Singh SM, Yadav LS, Singh SK, Singh P, Singh PN, Ravindra R (2011) Phosphate solubilizing ability of two arctic Aspergillus strains. Polar Res 30:7283–7289CrossRefGoogle Scholar
  87. Soni R, Suyal DC, Agrawal K, Yadav A, Shouche Y, Goel R (2015) Differential proteomic expression of Himalayan psychrotrophic diazotroph Pseudomonas palleroniana N26 under low temperature diazotrophic conditions. Cryo Letters 36:74–82PubMedGoogle Scholar
  88. Srivastava AK, Rai A, Kumar S, Kashyap PL, Arora DK (2013) Extremophiles: potential sources of biomolecules. In: Tiwari SP, Sharma R, Singh RK (eds) Recent advances in microbiology. Nova Publishers, New York, pp 551–564Google Scholar
  89. Subramanian P (2011) Psychrotolerance mechanisms in cold-adapted bacteria and their perspectives as plant growth- promoting bacteria in temperate agriculture. Korean J Soil Sci Fertil 44(4):625–636CrossRefGoogle Scholar
  90. Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum Lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28:1073–1081.  https://doi.org/10.1094/MPMI-01-15-0021-R CrossRefPubMedGoogle Scholar
  91. Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in Psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS One 11(8):e0161592PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41(9):776–784PubMedCrossRefGoogle Scholar
  93. Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68:543–550PubMedCrossRefGoogle Scholar
  94. Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51CrossRefGoogle Scholar
  95. Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) An overview: cold stress effects on reproductive development in grain crops. Environ Exp Bot 67:429–443CrossRefGoogle Scholar
  96. Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. MPMI 25(2):241–249PubMedCrossRefGoogle Scholar
  97. Tiryaki D, Ihsan A, okkes A (2019) Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86:111–119PubMedCrossRefGoogle Scholar
  98. Trivedi P, Sa T (2008) Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilisation, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144PubMedCrossRefGoogle Scholar
  99. Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47(6):513–517PubMedCrossRefGoogle Scholar
  100. Turan M, Gulluce M, Cakmak R, Sahin F (2013) Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr 36:731–748CrossRefGoogle Scholar
  101. Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112(2):245–254CrossRefGoogle Scholar
  102. van der Ploeg A, Heuvelink E (2005) Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652–659CrossRefGoogle Scholar
  103. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899CrossRefGoogle Scholar
  104. Vyas P, Joshi R, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20(12):1724–1734PubMedGoogle Scholar
  105. Wang P, Zhang Y, Mi F, Tang X, He X, Cao Y, Liu C, Yang D, Dong J, Zhang K, Xu J (2015) Recent advances in population genetics of ectomycorrhizal mushrooms Rusulla spp. Mycology 6:110–120PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S (2016a) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang C, Wang C, Gao YL, Wang YP, Guo JH (2016b) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35(1):54–64CrossRefGoogle Scholar
  108. Whaley JM, Kirby EJM, Spink JH, Foulkes MJ, Sparkes DL (2004) Frost damage to winter wheat in the UK: the effect of plant population density. Eur J Agron 21:105–115CrossRefGoogle Scholar
  109. Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290CrossRefGoogle Scholar
  110. Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527CrossRefGoogle Scholar
  111. Yadav AN, Singh RN, Sachan SG, Kaushik R (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213CrossRefGoogle Scholar
  113. Zhao J, Li S, Jiang T, Liu Z, Zhang W (2012) Chilling stress- the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS One 7:e36126PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhou Z, Ma H, Liang K (2012) Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 31:427–435CrossRefGoogle Scholar
  115. Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137CrossRefGoogle Scholar
  116. Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Biochem 73:427–443PubMedCrossRefGoogle Scholar
  117. Zhu XC, Song FB, Liu FL, Liu SQ, Tian CJ (2015) Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop Pasture Sci 66:62–70CrossRefGoogle Scholar
  118. Zhuang K, Kong F, Zhang S, Meng C, Yang M, Liu Z, Wang Y, Ma N, Meng Q (2019) Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol 221:1998–2012PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Prity Kushwaha
    • 1
  • Prem Lal Kashyap
    • 2
  • Pandiyan Kuppusamy
    • 1
  1. 1.ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM)MauIndia
  2. 2.ICAR—Indian Institute of Wheat and Barley Research (IIWBR)KarnalIndia

Personalised recommendations