Advertisement

Understanding Cold-Adapted Plant Growth-Promoting Microorganisms from High-Altitude Ecosystems

  • Himani Singh
  • Nupur Sinha
  • Prachi BhargavaEmail author
Chapter
  • 39 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Psychrophiles are found almost in all the ecosystems at low temperatures. They are of great importance as they act as models to study the mechanics for survival at low temperature and can be used to extract several enzymes and secondary metabolites which are useful in various industries say healthcare, food, detergent, tannery, etc. This chapter focuses on the basic modifications of psychrophiles at cellular, molecular and functional levels, their applications in different spheres of life and how these strategies can be mimicked in human lives.

Keywords

Psychrophiles PGPR High altitude Cold-adapted enzymes 

References

  1. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two component signal transduction thermometer in Bacillus subtilis. EMBO J 20(7):1681–1691PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albanesi D, Mansilla MC, de Mendoza D (2004) The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186(9):2655–2663PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3(9):1012PubMedCrossRefGoogle Scholar
  4. Angelidis AS, Smith GM (2003) Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69(12):7492–7498PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anuradha K, Padma PN, Venkateshwar S, Reddy G (2010) Fungal isolates from natural pectic substrates for polygalacturonase and multienzyme production. Indian J Microbiol 50(3):339–344PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, Van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F, Bates NR (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336(6087):1408PubMedCrossRefGoogle Scholar
  7. Arthur HE, Watson KE (1976) Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128(1):56–68PubMedPubMedCentralCrossRefGoogle Scholar
  8. Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7(28):2431–2439Google Scholar
  9. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159(12):2437–2443PubMedCrossRefGoogle Scholar
  10. Birgisson H, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7(3):185–193PubMedCrossRefGoogle Scholar
  11. Bouvet V, Ben RN (2003) Antifreeze glycoproteins. Cell Biochem Biophys 39(2):133–144PubMedCrossRefGoogle Scholar
  12. Brun E, Moriaud F, Gans P, Blackledge MJ, Barras F, Marion D (1997) Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry 36(51):16074–16086PubMedCrossRefGoogle Scholar
  13. Campanaro S, Williams TJ, Burg DW, De Francisci D, Treu L, Lauro FM, Cavicchioli R (2011) Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol 13(8):2018–2038PubMedCrossRefGoogle Scholar
  14. Cao-Hoang L, Dumont F, Marechal PA, Le-Thanh M, Gervais P (2008) Rates of chilling to 0 C: implications for the survival of microorganisms and relationship with membrane fluidity modifications. Appl Microbiol Biotechnol 77(6):1379–1387PubMedCrossRefGoogle Scholar
  15. Cao-Hoang L, Dumont F, Marechal PA, Gervais P (2010) Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch Microbiol 192(4):299–305PubMedCrossRefGoogle Scholar
  16. Carpousis AJ (2002) The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienyzme complexes. Biochem Soc Trans 30(2):150–155PubMedCrossRefGoogle Scholar
  17. Carpousis AJ, Luisi BF, McDowall KJ (2009) Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog Mol Biol Transl Sci 85:91–135PubMedCrossRefGoogle Scholar
  18. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18(8):374–381PubMedCrossRefGoogle Scholar
  19. Chahiniana H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16(10):1149–1161CrossRefGoogle Scholar
  20. Chaikam V, Karlson DT (2010) Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep 43(1):1–8PubMedCrossRefGoogle Scholar
  21. Chandran V, Luisi BF (2006) Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol 358(1):8–15PubMedCrossRefGoogle Scholar
  22. Chandran V, Poljak L, Vanzo NF, Leroy A, Miguel RN, Fernandez-Recio J, Parkinson J, Burns C, Carpousis AJ, Luisi BF (2007) Recognition and cooperation between the ATP-dependent RNA helicase RhlB and ribonuclease RNase E. J Mol Biol 367(1):113–132PubMedCrossRefGoogle Scholar
  23. Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10(7):311CrossRefGoogle Scholar
  24. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41CrossRefGoogle Scholar
  25. Cheng J, Hanada Y, Miura A, Tsuda S, Kondo H (2016) Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J 473(21):4011–4026PubMedCrossRefGoogle Scholar
  26. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50(5):631–642Google Scholar
  27. Cho KH (2017) The structure and function of the gram-positive bacterial RNA degradosome. Front Microbiol 8:154PubMedPubMedCentralGoogle Scholar
  28. Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Gerday C, Marx JC (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227CrossRefGoogle Scholar
  29. Czapski TR, Trun N (2014) Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene 547(1):91–97PubMedCrossRefGoogle Scholar
  30. D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278(10):7891–7896PubMedCrossRefGoogle Scholar
  31. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389PubMedPubMedCentralCrossRefGoogle Scholar
  32. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517PubMedPubMedCentralCrossRefGoogle Scholar
  33. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309PubMedCrossRefGoogle Scholar
  34. Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P (2012) High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep 4(3):360–366PubMedCrossRefGoogle Scholar
  35. Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59(11):1902–1913PubMedCrossRefGoogle Scholar
  36. Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly (A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276(34):31651–31656PubMedCrossRefGoogle Scholar
  37. Feng S, Powell SM, Wilson R, Bowman JP (2014) Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol Evol 6(1):133–148PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fondi M, Bosi E, Giudice AL, Fani R (2016) A systems biology view on bacterial response to temperature shift. In: Biotechnology of extremophiles. Springer, Cham, pp 597–618CrossRefGoogle Scholar
  39. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+−dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245(1):67–72PubMedCrossRefGoogle Scholar
  40. Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, Prisco G, Nardini M, Estrin D, Smulevich G (2015) Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 282(15):2948–2965PubMedCrossRefGoogle Scholar
  41. Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci 87(1):283–287PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hardwick SW, Chan VS, Broadhurst RW, Luisi BF (2010) An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res 39(4):1449–1459PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hirano SS, Baker LS, Upper CD (1985) Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiol 77(2):259–265PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50(1):26–38CrossRefGoogle Scholar
  45. Jagtap P, Ray MK (1999) Studies on the cytoplasmic protein tyrosine kinase activity of the Antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 173(2):379–388PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27(2):101–106PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernández MT, Romero D, Menezes-Blackburn D, De La Luz Mora M (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75(1):163–172PubMedCrossRefGoogle Scholar
  48. Jung YH, Yi JY, Jung HJ, Lee YK, Lee HK, Naicker MC, Uh JH, Jo IS, Jung EJ, Im H (2010) Overexpression of cold shock protein A of Psychromonasarctica KOPRI 22215 confers cold-resistance. Protein J 29(2):136–142PubMedCrossRefGoogle Scholar
  49. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kawahara H, Omori N, Obata H (2008) Cryoprotective activity of mannoprotein from the cell membrane of Pichiaanomala. CryoLetters 29(5):437–445PubMedGoogle Scholar
  51. Khemici V, Poljak L, Luisi BF, Carpousis AJ (2008) The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 70(4):799–813PubMedGoogle Scholar
  52. Kim HK, Orser C, Lindow SE, Sands DC (1987) Xanthomonas campestris pv. translucens strains active in ice nucleation. Plant Dis 71(11):994–997CrossRefGoogle Scholar
  53. Kozloff LM, Schofield MA, Lute M (1983) Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J Bacteriol 153(1):222–231PubMedPubMedCentralCrossRefGoogle Scholar
  54. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I Oceanogr Res Pap 49(12):2163–2181CrossRefGoogle Scholar
  55. Kuddus M, Roohi AJ, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10(3):246–258CrossRefGoogle Scholar
  56. Lécrivain AL, Le Rhun A, Renault TT, Ahmed-Begrich R, Hahnke K, Charpentier E (2018) In vivo 3′-to-5′ exoribonuclease targetomes of Streptococcus pyogenes. Proc Natl Acad Sci 115(46):11814–11819PubMedCrossRefGoogle Scholar
  57. Lee J, Jeong KW, Jin B, Ryu KS, Kim EH, Ahn JH, Kim Y (2013) Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium. Biochemistry 52(14):2492–2504PubMedCrossRefGoogle Scholar
  58. Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Annu Rev Phytopathol 21(1):363–384CrossRefGoogle Scholar
  59. Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33(1):1–4CrossRefGoogle Scholar
  60. Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, Jeon CO (2012) Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7(4):e35784PubMedPubMedCentralCrossRefGoogle Scholar
  61. Merín MG, Mendoza LM, Farías ME, De Ambrosini VI (2011) Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. Int J Food Microbiol 147(2):144–148PubMedCrossRefGoogle Scholar
  62. Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327(5972):1512–1514PubMedCrossRefGoogle Scholar
  63. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144PubMedPubMedCentralCrossRefGoogle Scholar
  64. Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186(17):5661–5671PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mykytczuk NC, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM (2011) Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie Van Leeuwenhoek 100(2):259–277PubMedCrossRefGoogle Scholar
  66. Neuhaus K, Francis KP, Rapposch S, Görg A, Scherer S (1999) Pathogenic Yersinia species carry a novel, cold-inducible major cold shock protein tandem gene duplication producing both bicistronic and monocistronic mRNA. J Bacteriol 181(20):6449–6455PubMedPubMedCentralCrossRefGoogle Scholar
  67. Neves MJ, Jorge JA, François JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neurosporacrassa. FEBS Lett 283(1):19–22PubMedCrossRefGoogle Scholar
  68. Nichols CM, Lardière SG, Bowman JP, Nichols PD, Gibson JA, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49(4):578–589PubMedCrossRefGoogle Scholar
  69. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118(8):683–694PubMedCrossRefGoogle Scholar
  70. Obata H, Saeki Y, Tanishita J, Tokuyama T, Hori H, Higashi Y (1987) Identification of an ice-nucleating bacterium KUIN-1 as Pseudomonas fluorescens and its ice nucleation properties. Agric Biol Chem 51(7):1761–1766Google Scholar
  71. Okuyama H, Morita N, Yumoto I (1999) Cold-adapted microorganisms for use in food biotechnology. In: Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 101–115CrossRefGoogle Scholar
  72. Pandey KD, Shukla SP, Shukla PN, Giri DD, Singh JS, Singh P, Kashyap AK (2004) Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell Mol Biol 50(5):575–584PubMedGoogle Scholar
  73. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136PubMedGoogle Scholar
  74. Popova EE, Yool A, Coward AC, Dupont F, Deal C, Elliott S, Hunke E, Jin M, Steele M, Zhang J (2012) What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J Geophys Res Oceans 117(C8):C00D12CrossRefGoogle Scholar
  75. Prud’homme-Généreux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54(5):1409–1421PubMedCrossRefGoogle Scholar
  76. Purusharth RI, Klein F, Sulthana S, Jäger S, Jagannadham MV, Evguenieva-Hackenberg E, Ray MK, Klug G (2005) Exoribonuclease R interacts with endoribonuclease E and an RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J Biol Chem 280(15):14572–14578PubMedCrossRefGoogle Scholar
  77. Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153(5):1566–1572PubMedCrossRefGoogle Scholar
  78. Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium–Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6(19):5221–5233PubMedCrossRefGoogle Scholar
  79. Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, Tümmler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188(11):4079–4092PubMedPubMedCentralCrossRefGoogle Scholar
  80. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996PubMedPubMedCentralCrossRefGoogle Scholar
  81. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151(2):341–353CrossRefGoogle Scholar
  82. Rodriduez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339Google Scholar
  83. Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686PubMedPubMedCentralCrossRefGoogle Scholar
  84. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4(2):83–90PubMedCrossRefGoogle Scholar
  85. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7(2):118PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sahu B, Ray MK (2008) Auxotrophy in natural isolate: minimal requirements for growth of the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W. J Basic Microbiol 48(1):38–47PubMedCrossRefGoogle Scholar
  87. Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39(1):80–87PubMedCrossRefGoogle Scholar
  88. Schärer K, Stephan R, Tasara T (2013) Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes. Foodborne Pathog Dis 10(12):1023–1029PubMedCrossRefGoogle Scholar
  89. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoeadispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960CrossRefGoogle Scholar
  90. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587PubMedPubMedCentralCrossRefGoogle Scholar
  91. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  92. Siddiqui KS, Feller G, D’Amico S, Gerday C, Giaquinto L, Cavicchioli R (2005) The active site is the least stable structure in the unfolding pathway of a multidomain cold-adapted α-amylase. J Bacteriol 187(17):6197–6205PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9(7):499PubMedCrossRefGoogle Scholar
  94. Song W, Lin X, Huang X (2012) Characterization and expression analysis of three cold shock protein (CSP) genes under different stress conditions in the Antarctic bacterium Psychrobacter sp. G. Polar Biol 35(10):1515–1524CrossRefGoogle Scholar
  95. Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434PubMedPubMedCentralCrossRefGoogle Scholar
  96. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 117–143CrossRefGoogle Scholar
  97. Sung MS, Im HN, Lee KH (2011) Molecular cloning and chaperone activity of DnaK from cold-adapted bacteria, KOPRI22215. Bull Kor Chem Soc 32(6):1925–1930CrossRefGoogle Scholar
  98. Tereshina VM, Mikhailova MV, Feofilova EP (1991) Physio-logical role of trehalose and an antioxidant in Cun-ninghamelia japonica during high temperature stress. Microbiology 60:533–540Google Scholar
  99. Tomoyuki N, Kaichiro Y, Tatsuro M, Noboru T (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94(2):175–177CrossRefGoogle Scholar
  100. Tosco A, Birolo L, Madonna S, Lolli G, Sannia G, Marino G (2003) GroEL from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125: molecular characterization and gene cloning. Extremophiles 7(1):17–28PubMedCrossRefGoogle Scholar
  101. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71(2):137–144PubMedCrossRefGoogle Scholar
  102. Verma P, Yadav AN, Kazy SK et al (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticumaestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10(2):219–227Google Scholar
  103. Verma P, Yadav AN, Kazy SK et al (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticumaestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447Google Scholar
  104. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticumaestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58PubMedCrossRefGoogle Scholar
  105. Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348(5):1211–1224PubMedCrossRefGoogle Scholar
  106. Wang G, Wang Q, Lin X, Ng TB, Yan R, Lin J, Ye X (2016) A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci Rep 6:19494PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Ann Plant Protect Sci 13(1):139–144Google Scholar
  108. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229CrossRefGoogle Scholar
  109. Whitman WB (1998) The unseen majority. Proc Natl Acad Sci U S A 74:5088–5090Google Scholar
  110. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):533–538PubMedCrossRefGoogle Scholar
  111. Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66(2):239–247PubMedCrossRefGoogle Scholar
  112. Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24(7):1059–1065CrossRefGoogle Scholar
  113. Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Microbial strategies for crop improvement. Springer, Berlin, pp. 23–50CrossRefGoogle Scholar
  114. Zhu HJ, Sun LF, Zhang YF, Zhang XL, Qiao JJ (2012) Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresour Technol 111:410–416PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institute of Biosciences and Technology, Shri Ramswaroop Memorial UniversityBarabankiIndia
  2. 2.Amity Institute of Biotechnology, AUUPNoidaIndia
  3. 3.Institute of Agricultural Sciences and Technology, Shri Ramswaroop Memorial UniversityBarabankiIndia

Personalised recommendations