Psychrotolerant Microbes: Characterization, Conservation, Strain Improvements, Mass Production, and Commercialization

  • Pankaj K. Mishra
  • Samiksha Joshi
  • Saurabh Gangola
  • Priyanka Khati
  • J. K. Bisht
  • A. Pattanayak
Part of the Rhizosphere Biology book series (RHBIO)


Exploring cold habitats offers untapped sites for screening and harnessing potential/novel psychrotrophic microbes bestowed with the characteristic to grow near 0 °C and optima lying in mesophilic range. These microbes are of great commercial importance and find multiple uses in different areas such as industries, pharmaceuticals, and agriculture as they are potential producers of enzymes, peptides, biodetergents, antibiotics and acquire multiple plant growth-promoting traits. Utility of such cold-active microbial strains is of immense need for high altitude agroecosystems due to the unique climatic conditions. Hence, it is crucial to identify, characterize, and conserve these beneficial microbes that maintain their functional properties under cold temperature conditions. This chapter is likely to provide some more insights into the recent developments associated with improvement and large-scale production of psychrotolerant microbes as well as scaling up for commercial production.


PGPR Psychrotolerant Characterization Strain improvement Conservation Commercialization 



The authors are grateful to the Director, ICAR-VPKAS, Almora-263601, Uttarakhand, India for his directions and valuable suggestions.


  1. Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26(5):332–349CrossRefGoogle Scholar
  2. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457CrossRefGoogle Scholar
  3. Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Indian J Sci Technol 1:1–8Google Scholar
  4. Banerjee R, Halder A, Natta A (2016) Psychrophilic microorganisms: habitats and exploitation potentials. Eur J Biotechnol Biosci 4:16–24Google Scholar
  5. Boddey R, De Oliveira O, Urquiaga S, Reis V, De Olivares F, Baldani V, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174(1–2):195–209CrossRefGoogle Scholar
  6. Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bridges BA (2001) Hypermutation in bacteria and other cellular systems. Philos Trans R Soc Lond B Biol Sci 356(1405):29–39PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual, 3rd edn. Benjamin/Cummings Pub. Co., New York, pp 125–179Google Scholar
  10. Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 16(1):21PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1- carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chisti Y (1999) Shear sensitivity. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 5. Wiley, New York, pp 2379–2406Google Scholar
  13. Das K, Katiyar V, Goel R (2003) ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158(4):359–362PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100:2499–2510PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dong J, Gasmalla MA, Zhao W, Sun J, Liu W, Wang M, Han L, Yang R (2017) Characterization of a cold-adapted esterase and mutants from a psychrotolerant Pseudomonas sp. strain. Biotechnol Appl Biochem 64(5):686–699PubMedCrossRefPubMedCentralGoogle Scholar
  17. Doraisamy S, Nakkeeran S, Chandrasekar G (2001) Trichoderma—bioarsenal in plant disease management and its scope for commercialization. In: Proceedings of Indian Phytopathological Society, Southern Zone Meeting, 10–12 December 2001. Indian Institute of Spice Research, Calicut, pp 43–55Google Scholar
  18. Elibol M, Ozer D (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem 36(4):325–329CrossRefGoogle Scholar
  19. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  20. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200PubMedCrossRefGoogle Scholar
  21. Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(3):207–214PubMedCrossRefPubMedCentralGoogle Scholar
  22. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117CrossRefGoogle Scholar
  23. Griffith GW (2012) Do we need a global strategy for microbial conservation? Trends Ecol Evol 27(1):1–2PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58(4):371–377PubMedCrossRefGoogle Scholar
  25. Gunasekaran V, Das D (2005) Lipase fermentation: progress and prospects. Indian J Biotechnol 4:437–445Google Scholar
  26. GuoYing XU, ShuoShuo CU, XueZheng LI (2011) Cloning and heterologous expression of pro-2127, a gene encoding cold-active protease from Pseudoalteromonas sp. QI-1. Adv Polar Sci 22(2):124–130Google Scholar
  27. Hacia JG, Makalowski W, Edgemon K, Erdos MR, Robbins CM, Fodor SP, Brody LC, Collins FS (1998) Evolutionary sequence comparisons using high-density oligonucleotide arrays. Nat Genet 18:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hellmuth K, van den Brink JM (2013) Microbial production of enzymes used in food applications. In: Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing, Cambridge, pp 262–287CrossRefGoogle Scholar
  29. Hemachander C, Bose N, Puvanakrishnan R (2001) Whole cell immobilization of Ralstonia pickettii for lipase production. Process Biochem 36(7):629–633CrossRefGoogle Scholar
  30. Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species: a critical global review of best practices. IPGRI Technical Bulletin No. 11. p 5Google Scholar
  31. Ito T, Kikuta H, Nagamori E, Honda H, Ogino H, Ishikawa H, Kobayashi T (2001) Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 91(3):245–250PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kademi A, Danielle L, Ajain H (2005) Lipases. Enzyme Technol 15:297–318Google Scholar
  33. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedCrossRefPubMedCentralGoogle Scholar
  34. Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42(3):239–244CrossRefGoogle Scholar
  35. Kepner RLJ, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301PubMedCrossRefGoogle Scholar
  37. Kuddus M, Ramteke PW (2011) Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res 5(7):809–816CrossRefGoogle Scholar
  38. Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65(2):611–617PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68(6):726–736PubMedCrossRefGoogle Scholar
  40. Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol Res 8(50):3931–3943Google Scholar
  41. Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33(1):1–4CrossRefGoogle Scholar
  42. Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40(6):453–459PubMedCrossRefPubMedCentralGoogle Scholar
  43. Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 30(6):327–356PubMedCrossRefPubMedCentralGoogle Scholar
  44. McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165Google Scholar
  45. Menoncin S, Domingues NM, Freire DM, Toniazzo G, Cansian RL, Oliveira JV, Di Luccio M, de Oliveira D, Treichel H (2008) Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food Bioprocess Technol 3(4):537–544CrossRefGoogle Scholar
  46. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918PubMedCrossRefPubMedCentralGoogle Scholar
  47. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568CrossRefGoogle Scholar
  48. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42(3):305–313CrossRefGoogle Scholar
  49. Mishra PK, Joshi P, Bisht SC, Bisht JK, Selvakumar G (2010) Cold-tolerant agriculturally important microorganisms. In: Plant growth and health promoting bacteria. Springer, Berlin, pp 273–296CrossRefGoogle Scholar
  50. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedCrossRefPubMedCentralGoogle Scholar
  51. Najafi MF, Deobagkar D, Deobagkar D (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechnol 8(2):79–85CrossRefGoogle Scholar
  52. Nakkeeran S, Kavitha K, Mathiyazhagan S, Fernando WGD, Chandrasekar G, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L). Can J Plant Pathol 26:417–418Google Scholar
  53. Narinx E, Baise E, Gerday C (1997) Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10(11):1271–1279PubMedCrossRefPubMedCentralGoogle Scholar
  54. Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein T, Epstein SS (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74(15):4889–4897PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ottenheim C, Nawrath M, Wu JC (2018) Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Biores Bioprocess 5(1):12CrossRefGoogle Scholar
  56. Pandey A, Trivedi P, Palni LMS (2006) Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107PubMedCrossRefGoogle Scholar
  57. Pandey A, Dhakar K, Jain R, Pandey N, Gupta VK, Kooliyottil R, Adhikari P (2019) Cold adapted fungi from Indian Himalaya: untapped source for bioprospecting. Proc Natl Acad Sci India Sect B Biol Sci 89(4):1125–1132CrossRefGoogle Scholar
  58. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370Google Scholar
  60. Ramana KV, Singh L, Dhaked RK (2000) Biotechnological application of psychrophiles and their habitat to low-temperature. J Sci Ind Res 59:87–101Google Scholar
  61. Refai M, El-Yazid HA, Tawakko W (2015) Monograph on the genus Penicillium- A guide for historical, classification and identification of Penicillium, their industrial applications and detrimental effects. 157ppGoogle Scholar
  62. Russell NJ (1990) Cold adaptation of micro-organism. Philos Trans R Soc Lond B Biol Sci 326:595–611PubMedCrossRefPubMedCentralGoogle Scholar
  63. Saranraj P, Sivasakthivelan P, Sivasakthi S (2013) Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Afr J Basic Appl Sci 5(2):95–101Google Scholar
  64. Satyanarayana T (1994) Production of bacterial extracellular enzymes by solid-state fermentation. In: Pandey A (ed) Solid-state fermentation. Wiley Eastern Limited, New Delhi, pp 122–129Google Scholar
  65. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  66. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56PubMedCrossRefPubMedCentralGoogle Scholar
  67. Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960CrossRefGoogle Scholar
  68. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175PubMedCrossRefGoogle Scholar
  69. Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245CrossRefGoogle Scholar
  70. Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137CrossRefGoogle Scholar
  71. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27(5):1129–1135CrossRefGoogle Scholar
  72. Sharma SK (2016) In-situ conservation I. Microbial conservation strategies and methodologies: status and challenges. Indian J Plant Genet Res 29(3):340–342CrossRefGoogle Scholar
  73. Sharma A, Shouche Y (2014) Microbial culture collection (MCC) and international depositary authority (IDA) at national centre for cell science, Pune. Indian J Microbiol 54(2):129–133PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662PubMedCrossRefGoogle Scholar
  75. Sharma SK, Singh SK, Ramesh A, Sharma PK, Varma A, Ahmad E, Khande R, Singh UB, Saxena AK (2018) Microbial genetic resources: status, conservation, and access and benefit-sharing regulations. In: Sharma S, Varma A (eds) Microbial resource conservation, Soil biology, vol 54. Springer, ChamGoogle Scholar
  76. Sharma SK, Saini S, Verma A, Sharma PK, Lal R, Roy M, Singh UB, Saxena AK, Sharma AK (2019a) National agriculturally important microbial culture collection in the global context of microbial culture collection centres. Proc Natl Acad Sci India Sect B Biol Sci 89(2):405–418CrossRefGoogle Scholar
  77. Sharma SK, Singh SK, Ramesh A, Sharma PK, Varma A, Ahmad E, Khande R, Singh UB, Saxena AK (2019b) Microbial genetic resources: status, conservation, and access and benefit sharing regulations. In: Sharma SK, Varma A (eds) Microbial resource conservation conventional to modern approaches. Springer Nature, Switzerland, pp 1–34. CrossRefGoogle Scholar
  78. Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. Appl Microbiol Biotechnol 4(2):30–37Google Scholar
  79. Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeon pea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Israel J Plant Sci 44:49–56CrossRefGoogle Scholar
  80. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54PubMedCrossRefPubMedCentralGoogle Scholar
  81. Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1–2):69–79PubMedCrossRefPubMedCentralGoogle Scholar
  82. Soror SH, Verma V, Rao R, Rasool S, Koul S, Qazi GN, Cullum J (2007) A cold-active esterase of Streptomyces coelicolor A3 (2): from genome sequence to enzyme activity. J Ind Microbiol Biotechnol 34(8):525–531PubMedCrossRefGoogle Scholar
  83. Temperton B, Giovannoni SJ (2012) Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol 15(5):605–612PubMedCrossRefPubMedCentralGoogle Scholar
  84. Tindbaek N, Svendsen A, Oestergaard PR, Draborg H (2004) Engineering a substrate-specific cold-adapted subtilisin. Protein Eng Des Sel 17(2):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  85. Turner SJ, Saul DJ, Rodrigo AG, Lewis GD (2002) A heteroduplex method for detection of targeted sub-populations of bacterial communities. FEMS Microbiol Lett 208:9–13PubMedCrossRefPubMedCentralGoogle Scholar
  86. Twardowski T, Małyska A (2015) Uninformed and disinformed society and the GMO market. Trends Biotechnol 33(1):1–3PubMedCrossRefPubMedCentralGoogle Scholar
  87. Vazquez SC, Coria SH, Mac Cormack WP (2008) Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol Res 159(2):157–166CrossRefGoogle Scholar
  88. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899CrossRefGoogle Scholar
  89. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58PubMedCrossRefGoogle Scholar
  90. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agroecological perspectives. Springer, Singapore, pp 543–580. CrossRefGoogle Scholar
  91. Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19(1):17–29PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vyas P, Joshi R, Sharma K, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad spectrum plant growth-promotion potential. J Microbiol Biotechnol 20(12):1724–1734PubMedGoogle Scholar
  93. Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Xiang M, Liu X (2015) Psychrophilic fungi from the world’s roof. Persoonia 34:100–112PubMedCrossRefGoogle Scholar
  94. World Federation for Culture Collections (2014).
  95. Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Res 3:1–8Google Scholar
  97. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Microorganisms for green revolution. Springer, Singapore, pp 197–240CrossRefGoogle Scholar
  98. Zachariah S, Kumari P, Das SK (2017) Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopor aeydouxi. Int J Syst Evol Microbiol 66(12):5091–5098CrossRefGoogle Scholar
  99. Zeng R, Zhang R, Zhao J, Lin N (2003) Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7(4):335–337PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213CrossRefGoogle Scholar
  101. Zlokarnik M (2000) Scale-up. Wiley-CH Verlag GmbH, Weinheim.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pankaj K. Mishra
    • 1
  • Samiksha Joshi
    • 1
  • Saurabh Gangola
    • 1
  • Priyanka Khati
    • 1
  • J. K. Bisht
    • 1
  • A. Pattanayak
    • 1
  1. 1.ICAR—Vivekananda Institute of Hill AgricultureAlmoraIndia

Personalised recommendations