Advertisement

A Coherent and Power-Efficient Optical Memory Access Network for Kilo-Core Processor

  • Quanyou FengEmail author
  • Junhui Wang
  • Hongwei Zhou
  • Wenhua Dou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1146)

Abstract

Coherent and power-efficient processor-memory interconnects are of great importance for kilo-core processor design. This paper proposes a hybrid photonic architecture for such interconnection. Specifically, a bandwidth-efficient photonic network which also supports coherence management is used for memory accesses between last-level HBM caches and off-chip HMC memory pools. Simulation results show that the hybrid network achieves up to 11% of system speedup and up to 6 times of energy savings, when compared to conventional electric interconnects.

Keywords

Photonic Noc HMC Memory subsystem Coherence 

Notes

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant 61402502, Grant 61402497 and Grant 61472432, and in part by HGJ under Grant 2018ZX01029-103.

References

  1. 1.
    Schulte, M.J., Ignatowski, M., Loh, G.H., et al.: Achieving exascale capabilities through heterogeneous computing. IEEE Micro 35(4), 26–36 (2015)CrossRefGoogle Scholar
  2. 2.
    Borkar, S.: Thousand core chips a technology perspective. In: Proceedings of 44th ACM/IEEE Design Automation Conference, pp. 746–749 (2007)Google Scholar
  3. 3.
    Sanchez, D., et al.: An analysis of on-chip interconnection networks for large-scale chip multiprocessors. ACM Trans. Archit. Code Optim. 7(1), 4 (2010)CrossRefGoogle Scholar
  4. 4.
    Dong, P., et al.: Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014)CrossRefGoogle Scholar
  5. 5.
    Iyer, S.S.: Three-dimensional integration: an industry perspective. MRS Bull. 40(03), 225–232 (2015)CrossRefGoogle Scholar
  6. 6.
    JEDEC Homepage. https://www.jedec.org/. Accessed 21 June 2017
  7. 7.
    HMC Homepage. http://www.hybridmemorycude.org/. Accessed 21 June 2017
  8. 8.
    Shacham, A., Bergman, K., Carloni, L.P.: Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Vantrease, D., et al.: Corona: system implications of emerging nanophotonic technology. In: Proceedings of 35th International Symposium on Computer Architecture, pp. 153–164 (2008)Google Scholar
  10. 10.
    Chan, J., et al.: PhoenixSim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. In: Proceedings on Design, Automation & Test in Europe (2010)Google Scholar
  11. 11.
    Kahng, A.B., et al.: ORION 2.0: a fast and accurate NoC power and area model for early-stage design space exploration. In: Proceedings on Design, Automation & Test in Europe (2009)Google Scholar
  12. 12.
    Sorin, D.J., et al.: A Primer on Memory Consistency and Cache Coherence. Synthesis Lectures on Computer Architecture #16. Morgan & Claypool Publishers, San Rafael (2011)CrossRefGoogle Scholar
  13. 13.
    Feng, C., Lu, Z., Jantsch, A., Zhang, M., Xing, Z.: Addressing transient and permanent faults in NoC with efficient fault-tolerant deflection router. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(6), 1053–1066 (2013)CrossRefGoogle Scholar
  14. 14.
    Feng, C., Lu, Z., Jantsch, A., Zhang, M., Yang, X.: Support efficient and fault-tolerant multicast in bufferless network-on-chip. IEICE Trans. Inf. Syst. E95-D(4), 1052–1061 (2012)CrossRefGoogle Scholar
  15. 15.
    Feng, Q., Peng, C., Ren, S., Zhou, H., Deng, R.: A high throughput power-efficient optical memory subsystem for kilo-core processor. In: Xu, W., Xiao, L., Li, J., Zhang, C., Zhu, Z. (eds.) NCCET 2017. CCIS, vol. 600, pp. 52–62. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-7844-6_6CrossRefGoogle Scholar
  16. 16.
    Ahmed, A.B., Meyer, M.C., Okuyama, Y., et al.: Efficient router architecture, design and performance exploration for many-core hybrid photonic network-on-chip (2D-PHENIC). In: International Conference on Information Science and Control Engineering, pp. 202–206 (2015)Google Scholar
  17. 17.
    Kodi, A.K., et al.: Scalable power-efficient kilo-core photonic-wireless NoC architectures. In: International Parallel and Distributed Processing Symposium, pp. 1010–1019 (2018)Google Scholar
  18. 18.
    Meyer, M.C., Okuyama, Y., Abdallah, A.B., et al.: A power estimation method for mesh-based photonic NoC routing algorithms. In: International Symposium on Computing and Networking, pp. 451–453 (2016)Google Scholar
  19. 19.
    Woo, S.C., et al.: The SPLASH-2 programs: characterization and methodological considerations. In: International Symposium on Computer Architecture, vol. 23, no. 2, pp. 24–36 (1995)CrossRefGoogle Scholar
  20. 20.
    Miller, J.E., et al.: Graphite: a distributed parallel simulator for multicores. In: 16th IEEE Symposium on High-Performance Computer Architecture, January 2010Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Quanyou Feng
    • 1
    Email author
  • Junhui Wang
    • 1
  • Hongwei Zhou
    • 1
  • Wenhua Dou
    • 1
  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations