Advertisement

Stabilization of Second Order Underactuated System Using Fast Terminal Synergetic Control

  • D. ZeharEmail author
  • A. Chérif
  • K. Behih
  • K. Benmahammed
  • N. Derbel
Chapter
  • 5 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 270)

Abstract

The control of underactuated mechanical systems (UMS) has been the subject of active scientific research, provided by the wide applications of such systems in different disciplines. The main purpose of studying these systems is to control certain variables in parallel, knowing that underactuated systems admit more degrees of freedom than the actuators. The lack of actuator complicates the task of controlling such systems. In this chapter, our objective is to find a control law which guarantees the finite time convergence and the stability of a class of second order underactuated system, for this reason, we have chosen to use the fast terminal synergetic control (FTSC), this latter is considered among robust controls, and has already proven its effectiveness in several applications of nonlinear systems. The UMS is divided into two sub-systems, and each one has its macro variable, which is constructed in hierarchical manner. To prove the efficiency of the proposed strategy of control, we show simulation results of a second order underactuated system example.

Keywords

Underactuated system Terminal synergetic control Stability Finite time convergence 

References

  1. 1.
    Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilisation of the cart-pendulum system. ISA Trans. 52(6), 870–880 (2013)CrossRefGoogle Scholar
  2. 2.
    Alaoui, S., Pages, O., Elhajjaji, A., Chaari, A., Koubaa, Y.: Robust adaptive fuzzy sliding mode control design for a class of MIMO underactuated system. IFAC Proc. 44(1), 11127–11132 (2011). ElsevierCrossRefGoogle Scholar
  3. 3.
    Bhave, M., Janardhanan, S., Dewan, L.: A finite time convergent sliding mode control for rigid underactuated robotic manipulator. Syst. Sci. Control Eng. 2(1), 493–499 (2014)CrossRefGoogle Scholar
  4. 4.
    Choukchou Braham, A.: Contribution à la stabilisation des systèmes mécaniques sous actionnés. Ph.D. thesis, Université Aboubekr Belkaid Tlemcen (2011)Google Scholar
  5. 5.
    Fantoni, I., Lozano, R., Spong, M.W.: Energy control of the pendubot. IEEE Trans. Autom. Control 45(4), 656–661 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Harmas, M.N.: Synergetic control and synchronisation of chaotic systems. Int. J. Control, Autom. Commun. Syst. (IJCACS) 1(2), 31–39 (2016)Google Scholar
  7. 7.
    Liu, C.H., Hsiao, M.Y.: Synchronization on unified chaotic systems via PI-type terminal synergetic control. In: CACS’2013, Sun Moon Lake, Taiwan.  https://doi.org/10.1109/CACS.2013.6734101 (2013)
  8. 8.
    Liu, J., Wang, X.: Advanced Sliding Mode Control for Mechanical Systems, Springer, Berlin (2011)Google Scholar
  9. 9.
    Lozano, R., Fantoni, I.: Perspectives in Control. Passivity based control of the inverted pendulum, pp. 83–95. Springer, London (1998)CrossRefGoogle Scholar
  10. 10.
    Mahjoub, S., Mnif, F., Derbel, N., Hamerlain, M.: Radial-basis functions neural network sliding mode control for underactuated mechanical systems. Int. J. Dyn. Control 2, 533–541 (2014)CrossRefGoogle Scholar
  11. 11.
    Olfati Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusettes Institute of Technology, Department Electrical Engineering and Computer Science (2001)Google Scholar
  12. 12.
    Seto, D., Baillieul, J.: Control problems in super articulated mechanical systems with application to robotics and aerospace vehicles. IEEE Trans. Autom. Control 39(12), 2442–2453 (1994)CrossRefGoogle Scholar
  13. 13.
    Shyu, K.K., Jen, C.L., Shang, L.J.: Design of sliding-mode controller for anti-swing control of overhead cranes. IEEE Proc. ACIIES’31 1, 147–152 (2005)Google Scholar
  14. 14.
    Singh, A.M., Hoang, V.T., Ha, Q.P.: Fast terminal sliding mode control for gantry cranes. In: ISARC’33 (2016)Google Scholar
  15. 15.
    Wang, W., Liu, X., Yi, J.: Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Control Theory Appl. 1, 163–172 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yu, X., Zhihong, M.: Multi-input uncertain linear systems with terminal sliding-mode control. Automatica 34, 389–392 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhenhua, J.: Design of power system stabilizers using synergetic control theory. IEEE PESGM (2007).  https://doi.org/10.1109/PES.2007.385651CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • D. Zehar
    • 1
    Email author
  • A. Chérif
    • 1
  • K. Behih
    • 2
  • K. Benmahammed
    • 3
  • N. Derbel
    • 4
  1. 1.Department of ElectromechanicalUniversity of Bordj Bou ArréridjEl AnasserAlgeria
  2. 2.Department of Electrical Engineering, LSI LaboratoryUniversity of SétifSetifAlgeria
  3. 3.Department of Electronic, LSI LaboratoryUniversity of SétifSetifAlgeria
  4. 4.ENIS, CEMLab LaboratoryUniversity of SfaxSfaxTunisia

Personalised recommendations