Advertisement

Robust and Adaptive State Estimation of UAV Quadrotors with a High Gain Approach

  • Habib DimassiEmail author
  • Nadia Miladi
  • Salim Hadj Said
  • Faouzi M’Sahli
Chapter
  • 14 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 270)

Abstract

In this chapter, we study the problem of joint states and external aerodynamic disturbances as well as the problem of adaptive estimation of quadrotor systems. We investigate two realistic configurations of the quadrotor system: in the first configuration, the dynamics of longitudinal and angular velocities are corrupted by unknown time varying disturbances and in the second one, the quadrotor system is subject to constant unknown parameters. For the two latter cases of study, only positions and angles are available for measurements. In particular, we focus on the problem observer matching condition which is necessary to solve both robust and adaptive estimation problems. The latter restrictive assumption is not verified for the quadrotor system. To overcome this problem, we adopt the approach of generation and estimation of auxiliary outputs based on high gain approximate differentiators. For the case of presence of time varying disturbances, we present a first order sliding mode observer in cascade with a high gain observer to reconstruct both the states and the unknown disturbances of the quadrotor system. For the case of presence of constant unknown parameters, we introduce an adaptive observer in cascade with the same high gain observer used in the first configuration to reconstruct both the states and the unknown parameters. Numerical simulations are depicted to illustrate the effectiveness and the good performances of the proposed robust and adaptive estimation approaches.

Keywords

Quadrotor Robust estimation Sliding mode observer High gain observer Unknown inputs reconstruction 

References

  1. 1.
    Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor uav. Int. J. Robust Nonlinear Control 18, 427–440 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Besançon, G.: Remarks on nonlinear adaptive observer design. Syst. Control Lett. 41, 271–280 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang, J., Cieslak, J., Davila, J., Zolghadri, A., Zhou, J.: Adaptive second-order sliding mode observer for quadrotor attitude estimation. In: American Control Conference (ACC), Boston, pp. 2246–2252 (2016)Google Scholar
  4. 4.
    Cho, Y.M., Rajamani, R.: Systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans. Autom. Control 42(4), 534–537 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Corless, M., Tu, J.: State and input estimation for a class of uncertain systems. Automatica 34, 757–764 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dimassi, H., Loría, A.: Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication. IEEE Trans. Circuits Syst. I 58(4), 800–812 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Farza, M., Bouraoui, I., Ménard, T., Abdennour, R., M’Saad, M.: Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs. Automatica 50, 2951–2960 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farza, M., M’saad, M., Maatoug, T., Kamoun, M.: Adaptive observers for nonlinearly parameterized class of nonlinear systems. Automatica 45, 2292–2299 (2009)Google Scholar
  9. 9.
    Farza, M., M’Saad, M., Ménard, T., Ltaief, A., Maatoug, T.: Adaptive observer design for a class of nonlinear systems. Application to speed sensorless induction motor. Automatica 90, 239–247 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fethalla, N., Saady, M., Michalskaz, H., Ghommam, J.: Robust observer-based backstepping controller for a quadrotor UAV. In: IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Canada (2011)Google Scholar
  11. 11.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers for systems with unknown inputs. Int. J. Adapt. Control Signal Process. 21, 63–656 (2007)Google Scholar
  12. 12.
    Grip, H.F., Saberi, A., Johansen, T.A.: Estimation of states and parameters for linear systems with nonlinearly parameterized perturbations. Syst. Control Lett. 60, 771–777 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kalsi, K., Lian, J., Hui, S., Zak, S.H.: Sliding-mode observers for systems with unknown inputs: a high-gain approach. Automatica 46, 347–353 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, C., Chen, W.H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear mpc augmented with disturbance observers. Control Eng. Pract. 20, 258–268 (2012)CrossRefGoogle Scholar
  15. 15.
    Maatoug, T., Farza, M., M’Saad, M., Koubaa, Y., Kamouni, M.: Adaptive output feedback controller for a class of uncertain nonlinear systems. In: Proceedings of the 17th IFAC world congress, Seoul, pp. 13139–13144 (2008)Google Scholar
  16. 16.
    Morales, J.D.L., Huerta-Guevara, O., Besançon, G.: On adaptive observers for state affine systems. Int. J. Control 79, 581–591 (2006)Google Scholar
  17. 17.
    Shim, H., Son, Y.I., Seo, J.H.: Semi-global observer for multi-output nonlinear systems. Syst. Control Lett. 42, 233–244 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tyukin, I.Y., Steur, E., Nijmeijer, H., Leeuwen, C.V.: Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters. Automatica 49, 2409–2423 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Walcott, B., Zak, S.H.: State observation of nonlinear uncertain dynamical systems. IEEE Trans. Autom. Control 32, 166–170 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, Q.: Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems. IEEE Trans. Autom. Control 47(3), 525–529 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Habib Dimassi
    • 1
    • 2
    Email author
  • Nadia Miladi
    • 2
  • Salim Hadj Said
    • 2
  • Faouzi M’Sahli
    • 2
  1. 1.Institut supérieur des sciences appliquées et de technologie de SousseUniversity of SousseSousseTunisia
  2. 2.ESIER, Ecole Nationale d’Ingénieurs de MonastirUniversity of MonastirMonastirTunisia

Personalised recommendations