Model-Based Fault Detection of Permanent Magnet Synchronous Motors of Drones Using Current Sensors

  • Guilhem Jouhet
  • Luis E. González-JiménezEmail author
  • Marco A. Meza-Aguilar
  • Walter A. Mayorga-Macías
  • Luis F. Luque-Vega
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 270)


This work proposes a simple, low-cost and effective scheme for the detection of the most common faults in drone actuators which are, usually, permanent magnet synchronous motors (PMSM). The scheme is based on a modelling stage which only requires the current measurements from a faultless motor. From this, a simplified transfer function of the motor is derived. Then, the output of this model and a healthy motor are used as arguments of simple tests to detect the occurrence of a set of characterized faults in the target motor. The setup of the scheme and the development of the tests are straightforward. The faults considered in this work are inter-turn short-circuit, changes in friction constant and flying off propeller and other less common faults. Experimental results show that these faults are accurately detected and characterized by the proposed scheme, opening doors to further work on predictive maintenance and drone adaptive or re-configurable controllers.


PMSM modelling Fault detection Drone actuators Current sensor 



This research is funded by National Council of Science and Technology (CONACyT) of México under grants 261774 and 227601.


  1. 1.
    Alvarez-Gonzalez, F., Griffo, A., Sen, B., Wang, J.: Real-time hardware-in-the-loop simulation of permanent-magnet synchronous motor drives under stator faults. IEEE Trans. Ind. Electron. 64(9), 6960–6969 (2017)CrossRefGoogle Scholar
  2. 2.
    Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: 2005 IEEE International Conference on Robotics and Automation ICRA, pp. 2247–2252. IEEE (2005)Google Scholar
  3. 3.
    Carrillo, L.R.G., Lopez, A.E.D., Lozano, R., Pegard, C.: Quad-rotor control (2011)Google Scholar
  4. 4.
    Kayalvizhi, M., Akilandeswari, M.: Design and implementation of speed regulator for a PMSM using genetic algorithm. Int. J. Innov. Res. Sci. Eng. Technol. 3(1), 866–872 (2014)Google Scholar
  5. 5.
    Lakshminarayan, I.: Model-based fault detection for low-cost UAV actuators. Ph.D. thesis, University of Minnesota (2016)Google Scholar
  6. 6.
    Li, C., Zhang, Y., Li, P.: Extreme learning machine based actuator fault detection of a quadrotor helicopter. Adv. Mech. Eng. 9(6), 1–10 (2017)Google Scholar
  7. 7.
    Liu, B.: Fault detection of brushless permanent magnet machine drives. Ph.D. thesis, University of Sheffield (2014)Google Scholar
  8. 8.
    Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: The PIXHAWK open-source computer vision framework for MAVs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(1), 13–18Google Scholar
  9. 9.
    Pillay, P., Krishnan, R.: Modeling of permanent magnet motor drives. IEEE Trans. Ind. Electron. 35(4), 537–541 (1988)CrossRefGoogle Scholar
  10. 10.
    Ruiz, J.R.R., Rosero, J.A., Espinosa, A.G., Romeral, L.: Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions. IEEE Trans. Magn. 45(7), 2961–2969 (2009)CrossRefGoogle Scholar
  11. 11.
    Singh, S., Kumar, A., Kumar, N.: Detection of bearing faults in mechanical systems using motor current signature and acoustic signatures. In: 21st International Congress on Sound Vibration, pp. 1–8 (2014)Google Scholar
  12. 12.
    Medeiros, R.L.V., Ramos, J.G.G.S., Nascimento, T.P., Lima Filho, A.C., Brito, A.V.: A novel approach for brushless DC motors characterization in drones based on chaos. Drones 2(2), 14 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Guilhem Jouhet
    • 1
  • Luis E. González-Jiménez
    • 2
    Email author
  • Marco A. Meza-Aguilar
    • 2
  • Walter A. Mayorga-Macías
    • 2
  • Luis F. Luque-Vega
    • 3
  1. 1.Ecole Centrale de LyonÉcullyFrance
  2. 2.Electronics, Systems and Informatics DepartmentITESO UniversityTlaquepaqueMexico
  3. 3.Centro de Investigación, Innovación y Desarrollo Tecnológico CIIDETEC-UVMUniversidad del Valle de MéxicoMexico CityMexico

Personalised recommendations