Advertisement

A CSI-Based Indoor Intrusion Detection and Localization Method

  • Xiaochao Dang
  • Caixia Li
  • Zhanjun HaoEmail author
  • Yuan Cao
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1101)

Abstract

In this paper, we propose a method for indoor intrusion detection and localization that makes use of channel state information (CSI), which consists of an offline phase and an online phase. In the former, we collect CSI in different scenarios, and at different times, for more comprehensive characterization of signal propagation. To reduce the redundancy and dimensionality of CSI data, we employ the principal component analysis algorithm to extract the main features of CSI, and build the fingerprint database for localization. In the online phase, we first apply the earth mover’s distance algorithm to detect the presence of the person in the test area. Following this, we determine the approximate location of the target according to the change of CSI measurements, and compare this to the fingerprint database, to select reference points to build the sub-fingerprint database. Finally, we evaluate the actual position of this target using the improved k-Nearest Neighbor algorithm.

Keywords

Channel state information Fingerprint database Intrusion detection Indoor localization 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 61762079, 61662070), Key Science and Technology Support Program of Gansu Province (Grant 1604FKCA097, 17YF1GA015), Science and Technology Innovation Project of Gansu Province (Grant CX2JA037, 17CX2JA039).

References

  1. 1.
    Shin, H., Chon, Y., Kim, Y., Cha, H.: MRI: Model-based radio interpolation for indoor war-walking. IEEE Trans. Mob. Comput. 14(6), 1231–1244 (2015)CrossRefGoogle Scholar
  2. 2.
    Lin, Y.-W., Lin, C.-Y.: An interactive real-time locating system based on bluetooth low-energy beacon network. Sensors 18(5) (2018). Article ID 1637CrossRefGoogle Scholar
  3. 3.
    Yang, B., Lei, Y., Yan, B.: Distributed multi-human location algorithm using naive Bayes classifier for a binary pyroelectric infrared sensor tracking system. IEEE Sens. J. 16(1), 216–223 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhuo, R., Luo, L., Li, Z., Sang, N.: An indoor pedestrian position algorithm based on smartphone sensor. Comput. Eng. 42(11), 22–26 (2016). (in Chinese)Google Scholar
  5. 5.
    Xiao, F., Wang, Z., Ye, N., Wang, R., Li, X.-Y.: One more tag enables fine-grained RFID localization and tracking. IEEE/ACM Trans. Netw. 26(1), 161–174 (2018)CrossRefGoogle Scholar
  6. 6.
    Husen, M.N., Lee, S.: Indoor location sensing with invariant Wi-Fi received signal strength fingerprinting. Sensors 16(11) (2016). Article ID 1898CrossRefGoogle Scholar
  7. 7.
    Pau, G., Collotta, M., Maniscalco, V., Choo, K.-K.R.: A fuzzy-PSO system for indoor localization based on visible light communications. Soft. Comput. 9, 1–11 (2018)Google Scholar
  8. 8.
    Yasir, M., Ho, S.W., Vellambi, B.N.: Indoor positioning system using visible light and accelerometer. J. Lightwave Technol. 32, 3306–3316 (2014)CrossRefGoogle Scholar
  9. 9.
    Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Predictable 802.11 packet delivery from wireless channel measurements. In: SIGCOMM 2010: Proceedings of the ACM SIGCOMM 2010 Conference, pp. 159–170 (2010)Google Scholar
  10. 10.
    Gao, Q., Wang, J., Ma, X., Feng, X., Wang, H.: CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Trans. Veh. Technol. 66(11), 10346–10356 (2017)CrossRefGoogle Scholar
  11. 11.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings. IEEE INFOCOM 2000 Conference on Computer Communications, vol. 2, pp. 775–784 (2000)Google Scholar
  12. 12.
    Shi, S., Sigg, S., Chen, L., Ji, Y.: Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting. IEEE Trans. Veh. Technol. 67(6), 5217–5230 (2018)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Gao, L., Mao, S., Pandey, S.: CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans. Veh. Technol. 66(1), 763–776 (2017)Google Scholar
  14. 14.
    Youssef, M., Agrawala, A.: The Horus location determination system. Wirel. Netw. 14(3), 357–374 (2008)CrossRefGoogle Scholar
  15. 15.
    Xiang, P., Ji, P., Zhang, D.: Enhance RSS-based indoor localization accuracy by leveraging environmental physical features. Wirel. Commun. Mob. Comput. 2018 (2018). Article ID 8956757Google Scholar
  16. 16.
    Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhou, R., Lu, X., Zhao, P., Chen, J.: Device-free presence detection and localization with SVM and CSI fingerprinting. IEEE Sens. J. 17(23), 7990–7999 (2017)CrossRefGoogle Scholar
  18. 18.
    Balog, M., Ilić, K., Mlinac-Jerkovic, K., et al.: Gender difference in glucocorticoid, insulin and estrogen receptors expression upon chronic stress and aging. In: RECOOP 13th Annual Scientific Conference, Bridges in Life Sciences (2018)Google Scholar
  19. 19.
    Wang, Y., Ma, X., Qian, P.: Wind turbine fault detection and identification through PCA-based optimal variable selection. IEEE Trans. Sustain. Energy 9(4), 1627–1635 (2018)CrossRefGoogle Scholar
  20. 20.
    Dhineshkumar, K., Subramani, C.: Kalman filter algorithm for mitigation of power system harmonics. Int. J. Electr. Comput. Eng. 8(2), 771–779 (2018)Google Scholar
  21. 21.
    Zhou, R., Chen, J., Lu, X., Wu, J.: CSI fingerprinting with SVM regression to achieve device-free passive localization. In: 2017 IEEE 18th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9 (2017)Google Scholar
  22. 22.
    Zhang, R., Zhang, J., Gao, Y., Zhao, H.: Block Bayesian matching pursuit based channel estimation for FDD massive MIMO system. AEU-Int. J. Electron. Commun. 93, 296–304 (2018)CrossRefGoogle Scholar
  23. 23.
    Wu, Z., Xu, Q., Li, J., et al.: Passive indoor localization based on CSI and Naive Bayes classification. IEEE Trans. Syst. Man Cybern.: Syst. 48(9), 1566–1577 (2017)CrossRefGoogle Scholar
  24. 24.
    Chen, H., Zhang, Y., Li, W., et al.: ConFi: convolutional neural networks based indoor wi-fi localization using channel state information. IEEE Access PP(99), 1 (2017)Google Scholar
  25. 25.
    Wang, X., Wang, X., Mao, S.: CiFi: deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi. In: IEEE ICC 2017 - 2017 IEEE International Conference on Communications-Paris, France, 21 May 2017–25 May 2017, pp. 1–6. IEEE (2017)Google Scholar
  26. 26.
    Seifeldin, M., Saeed, A., Kosba, A.E., El-Keyi, A., Youssef, M.: Nuzzer: a large-scale device-free passive localization system for wireless environments. IEEE Trans. Mob. Comput. 12(7), 1321–1334 (2013)CrossRefGoogle Scholar
  27. 27.
    Xiao, J., Wu, K., Yi, Y., Wang, L., Ni, L.M.: Pilot: passive device-free indoor localization using channel state information. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems, pp. 236–245 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaochao Dang
    • 1
    • 2
  • Caixia Li
    • 1
  • Zhanjun Hao
    • 1
    • 2
    Email author
  • Yuan Cao
    • 1
  1. 1.College of Computer Science and EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.Gansu Province Internet of Things Engineering Research CenterLanzhouChina

Personalised recommendations