A New Hybrid Backstepping Approach for the Position/Force Control of Mobile Manipulators

  • Manju Rani
  • Dinanath
  • Naveen KumarEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 922)


Based on the conventional backstepping control scheme, a novel hybrid control law is presented which merges the advantages of the model-dependent and the intelligent-technique based model-free schemes. Further, anadaptive compensator term is also considered which provides the powerful robustness in the direction of the uncertainties that includes the reconstruction error and uncertain disturbances. By using the online adaptation of the parameters, stability analysis is performed and the complete system is asymptotic stable. The robustness and validity of the presented control technique are shown by the comparative computer simulation tests.


Model-based controller Radial basis function Backstepping Asymptotical stable Constrained manipulators 



We thank the University Grants Commission (UGC) Sr.No. 2121240927 with Ref No. 23/12/2012 (ii) EU-V, New Delhi, India for their support.


  1. 1.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)CrossRefGoogle Scholar
  2. 2.
    Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators. IEEE Trans. Syst. Man Cybern. 39(3), 788–799 (2009)CrossRefGoogle Scholar
  3. 3.
    Xi, R., Hi, Y., Xiao, X.: Trajectory tracking control for nonholonomic mobile robot using an improved ILC. In: Proceedings of IEEE International Conference on Information and Automation, pp. 830–835 (2014)Google Scholar
  4. 4.
    Fareh, R., Robie, T.: Trajectory tracking for nonholonomic mobile manipulator using disturbed control strategy. In: Proceedings of 10th International Symposium on Mechatronics and its Applications, pp. 788–799 (2009)Google Scholar
  5. 5.
    Xia, K., et al.: Trajectory tracking control of wheeled mobile manipulators based on fuzzy neural network and extended Kalman filtering. Neural Comput. Appl. 1–16 (2017)Google Scholar
  6. 6.
    Inoue, F., Muralami, T., Ihnishi, K.: A motion control of mobile manipulator with external force. IEEE/ASME Trans. Mech. 6(2), 137–142 (2002)CrossRefGoogle Scholar
  7. 7.
    Watanabe, K., Sato, K., Izumi, K., Kunitake, Y.: A motion control of mobile manipulator with external force. J. Intell. Robotic Syst. 27(1/2), 3–20 (2000)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Ge, S.S., Adams, M.D., Wijesoma, W.S.: Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators. IEEE Trans. Control Syst. Technol. 16(6), 1308–1315 (2008)CrossRefGoogle Scholar
  9. 9.
    Gierlak, P., Szuster, M.: Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 95, 80–101 (2017)CrossRefGoogle Scholar
  10. 10.
    Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulator. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37, 607–616 (2007)CrossRefGoogle Scholar
  11. 11.
    Ren, Y.I., Chen, Z., Liu, Y., Gu, Y., Jin, M., Liu, H.: Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. J. Franklin Inst. 354, 7767–7793 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Han, S., Ha, H., Zhao, Y., Lee, J.: Assumed model feedforward sliding mode control for a wheeled mobile robot with 3-DOF manipulator systems. J. Mech. Sci. Technol. 31(3), 1463–1475 (2017)CrossRefGoogle Scholar
  13. 13.
    Cao, K., Jiang, B., Yue, D.: Cooperative path following control of multiple non-holonomic mobile robots. J. Mech. Sci. Technol. 31(3), 1463–1475 (2017)CrossRefGoogle Scholar
  14. 14.
    Rani, M., Kumar, N., Singh, H.P.: Efficient position/force control of constrained mobile manipulators. Int. J. Dyn. Control 1–10 (2018). Scholar
  15. 15.
    Boukens, M., Boukabou, A., Chadli, M.: Robust adaptive neural network based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robot. Auton. Syst. 92, 30–40 (2017)CrossRefGoogle Scholar
  16. 16.
    Panwar, V., Kumar, N., Sukavanam, N., Borm, J.H.: Adaptiveneuralcontrollerfor cooperative multiple robot manipulator system manipulating a single rigid object. Appl. Soft Comput. 12, 216–227 (2012)CrossRefGoogle Scholar
  17. 17.
    Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–1807 (2012)CrossRefGoogle Scholar
  18. 18.
    Mai, T.L., Wang, Y.: Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks. Control Theory Technol. 12(4), 368–382 (2014)CrossRefGoogle Scholar
  19. 19.
    Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simulat. 18, 2885–2899 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cheng, M.B., Tsai, C.C.: Robust backstepping tracking control using hybrid sliding-mode neural network for a nonholonomic mobile manipulator with dual arms. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 1964–1969 (2005)Google Scholar
  21. 21.
    Baigzadehnoe, B., Rahmanin, Z., Khosravi, A., Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)CrossRefGoogle Scholar
  22. 22.
    Park, J., Sandberg, J.W.: Universal approximation using radial basis function networks. Neural Comput. 3, 246–257 (1991)CrossRefGoogle Scholar
  23. 23.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Upper Saddle River (1991)Google Scholar
  24. 24.
    Rani, M., Kumar, N.: A new hybrid position/force control scheme for coordinated multiple mobile manipulators. Arab. J. Sci. Eng. (2018). Scholar
  25. 25.
    Kumar, N., Panwar, V., Sukavanam, N.: Neural network control of coordinated multiple manipulator systems. In: Proceedings of the International Conference on Computing: Theory and Applications (ICCTA 2007) (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of Technology, KurukshetraKurukshetraIndia

Personalised recommendations