Advertisement

Interactive Deep Metric Learning for Healthcare Cohort Discovery

  • Yang WangEmail author
  • Guodong LongEmail author
  • Xueping PengEmail author
  • Allison Clarke
  • Robin Stevenson
  • Leah Gerrard
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1127)

Abstract

Given the continuous growth of large-scale complex electronic healthcare data, a data-driven healthcare cohort discovery facilitated by machine learning tools with domain expert knowledge is required to gain further insights of the healthcare system. Specifically, clustering plays a crucial role in healthcare cohort discovery, and metric learning is able to incorporate expert feedback to generate more fit-for-purpose clustering outputs. However, most of the existing metric learning methods assume all labelled instances already pre-exists, which is not always true in real-world applications. In addition, big data in healthcare also brings new challenges to metric learning on handling complex structured data. In this paper, we propose a novel systematic method, namely Interactive Deep Metric Learning (IDML), which uses an interactive process to iteratively incorporate feedback from domain experts to identify cohorts that are more relevant to a particular pre-defined purpose. Moreover, the proposed method leverages powerful deep learning-based embedding techniques to incrementally gain effective representations for the complex structures inherit in patient journey data. We experimentally evaluate the effectiveness of the proposed IDML using two public healthcare datasets. The proposed method has also been implemented into an interactive cohort discovery tool for a real-world application in healthcare.

Keywords

Clustering Deep metric learning Interactive cohort discovery Patient journey similarity 

References

  1. 1.
    Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)MathSciNetGoogle Scholar
  2. 2.
    Awasthi, P., Balcan, M.F., Voevodski, K.: Local algorithms for interactive clustering. J. Mach. Learn. Res. 18(1), 75–109 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Balcan, M.-F., Blum, A.: Clustering with interactive feedback. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 316–328. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87987-9_27CrossRefGoogle Scholar
  4. 4.
    Balcan, M.F., Liang, Y., Gupta, P.: Robust hierarchical clustering. J. Mach. Learn. Res. 15(1), 3831–3871 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brainard, W.C.: Uncertainty and the effectiveness of policy. Am. Econ. Rev. 57(2), 411–425 (1967)Google Scholar
  6. 6.
    Choi, E., et al.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)Google Scholar
  7. 7.
    Choi, E., et al.: Multi-layer representation learning for medical concepts. In: SIGKDD, pp. 1495–1504. ACM (2016)Google Scholar
  8. 8.
    Choi, E., et al.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism. In: NIPS, pp. 3504–3512 (2016)Google Scholar
  9. 9.
    Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Jt. Summits Transl. Sci. Proc. 2016, 41 (2016)Google Scholar
  10. 10.
    cms.gov: CMS 2008–2010 data entrepreneurs’ synthetic public use file (2015)Google Scholar
  11. 11.
    Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216. ACM (2007)Google Scholar
  12. 12.
    Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood components analysis. In: NIPS, pp. 513–520 (2005)Google Scholar
  13. 13.
    Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS, pp. 857–864 (2003)Google Scholar
  14. 14.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  15. 15.
    Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Gen. 13(6), 395 (2012)CrossRefGoogle Scholar
  16. 16.
    Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)CrossRefGoogle Scholar
  17. 17.
    Jolliffe, I.: Principal component analysis for special types of data. In: Jolliffe, I. (ed.) Principal Component Analysis, pp. 338–372. Springer, New York (2002).  https://doi.org/10.1007/0-387-22440-8_13CrossRefzbMATHGoogle Scholar
  18. 18.
    Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)
  19. 19.
    Meystre, S., et al.: Clinical data reuse or secondary use: current status and potential future progress (2017)CrossRefGoogle Scholar
  20. 20.
    Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)Google Scholar
  21. 21.
    Mikolov, T., et al.: Efficient estimation of word representations in vector space. arXiv:1301.3781 (2013)
  22. 22.
    Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)CrossRefGoogle Scholar
  23. 23.
    Peng, X., Long, G., Pan, S., Jiang, J., Niu, Z.: Attentive dual embedding for understanding medical concepts in electronic health records. In: IJCNN, pp. 1–8 (2019)Google Scholar
  24. 24.
    Peng, X., Long, G., Shen, T., Wang, S., Jiang, J., Blumenstein, M.: Temporal self-attention network for medical concept embedding. arXiv preprint arXiv:1909.06886 (2019)
  25. 25.
    Schoen, C., Osborn, R., Doty, M.M., Squires, D., Peugh, J., Applebaum, S.: A survey of primary care physicians in eleven countries, 2009: perspectives on care, costs, and experiences: doctors say problems exist across all eleven countries, although some nations are doing a better job than others. Health Aff. 28(Suppl1), w1171–w1183 (2009)CrossRefGoogle Scholar
  26. 26.
    Suo, Q., et al.: Deep patient similarity learning for personalized healthcare. IEEE T NANOBIOSCI 17(3), 219–227 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, F.: Semisupervised metric learning by maximizing constraint margin. Cybernetics 41(4), 931–939 (2011)Google Scholar
  28. 28.
    Wang, F., Sun, J.: PSF: a unified patient similarity evaluation framework through metric learning with weak supervision. IEEE J. Biomed. Health Inform. 19(3), 1053–1060 (2015)CrossRefGoogle Scholar
  29. 29.
    Wang, F., Sun, J., Hu, J., Ebadollahi, S.: iMet: interactive metric learning in healthcare applications. In: SDM, pp. 944–955. SIAM (2011)Google Scholar
  30. 30.
    Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR 10(Feb), 207–244 (2009)zbMATHGoogle Scholar
  31. 31.
    Weiskopf, N.G., et al.: Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inform. 46(5), 830–836 (2013)CrossRefGoogle Scholar
  32. 32.
    Weiskopf, N.G., Weng, C.: Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. JAMIA 20(1), 144–151 (2013)Google Scholar
  33. 33.
    Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with application to clustering with side-information. In: NIPS, pp. 521–528 (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Artificial IntelligenceUniversity of Technology SydneySydneyAustralia
  2. 2.Department of HealthAustralian GovernmentCanberraAustralia

Personalised recommendations