An Approach to Detect and Classify Defects in Cantilever Beams Using Dynamic Mode Decomposition and Machine Learning

  • Kailash NagarajanEmail author
  • J Ananthu
  • Vijay Krishna Menon
  • K. P. Soman
  • E. A. Gopalakrishnan
  • Ajith Ramesh
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 169)


Defects in structures will affect its natural vibrations. With the advent of pure data-driven modeling techniques such as Dynamic Mode Decomposition (DMD), the defected modes can be separated from the normal modes by using vibration data from various points on the structural element. In this work we simulate the vibrations of a cantilever beam in Abaqus® without defect and with different defects. We apply DMD to compute the spatial modes of vibration in each of these cases. Furthermore we train a Support Vector Machine (SVM) classifier with the Eigen-modes we have computed, to identify defects. We also analyze this data visually using t-SNE plots.


Dynamic mode decomposition Structural health monitoring Support vector machines 


  1. 1.
    Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., Czarnecki, J.J.: A review of structural health monitoring literature: 1996–2001. Los Alamos Natl. Lab. USA (2003)Google Scholar
  2. 2.
    Cawley, P., Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. Des. 14(2), 49–57 (1979)CrossRefGoogle Scholar
  3. 3.
    Xiang, J., Matsumoto, T., Wang, Y., Jiang, Z.: Detect damages in conical shells using curvature mode shape and wavelet finite element method. Int. J. Mech. Sci. 66, 83–93 (2013)CrossRefGoogle Scholar
  4. 4.
    Stubbs, N., Osegueda, R.: Global non-destructive damage evaluation in solids. Int. J. Anal. Exp. Modal Anal. 5, 67–79 (1990)Google Scholar
  5. 5.
    Chondros, T.G., Dimarogonas, A.D.: Vibration of a cracked cantilever beam. J. Vib. Acoust. 120(3), 742–746 (1998)CrossRefGoogle Scholar
  6. 6.
    Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefGoogle Scholar
  7. 7.
    Schmid, P.J.: Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50(4), 1123–1130 (2011)Google Scholar
  8. 9.
    Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. arXiv preprint arXiv:1312.0041 (2013)
  9. 10.
    Mohan, N., Soman, K.P., Kumar, S.S.: A data-driven strategy for short- term electric load forecasting using dynamic mode decomposition model. Appl. Energy 232, 229–244 (2018)Google Scholar
  10. 11.
    Megha, P., Sowmya, V., Soman, K.P.: Effect of dynamic mode decomposition- based dimension reduction technique on hyperspectral image classification. In: Computational Signal Processing and Analysis, pp. 89–99. Springer, New York (2018)Google Scholar
  11. 12.
    Brunton, S.L., Proctor, J.L., Kutz, J.N.: Compressive sampling and dynamic mode decomposition. arXiv preprint arXiv:1312.5186 (2013)
  12. 13.
    Kutz, JN., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)Google Scholar
  13. 14.
    Klus, S., Gelß, P., Peitz, S. and Schütte, C.: Tensor-based dynamic mode decomposition. Nonlinearity 31(7), 3359 (2018)Google Scholar
  14. 15.
    Barata, J.C.A., Hussein, M.S.: The moore–penrose pseudoinverse: a tutorial review of the theory. Braz. J. Phys. 42(1–2), 146–165 (2012)CrossRefGoogle Scholar
  15. 16.
    Xu, P.: Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 135(2), 505–514 (1998)CrossRefGoogle Scholar
  16. 17.
    Taussky, O., Zassenhaus, H., et al.: On the similarity transformation between a matirx and its transpose. Pac. J. Math. 9(3), 893–896 (1959)CrossRefGoogle Scholar
  17. 18.
    Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 161–168 (2006)Google Scholar
  18. 19.
    Van Der Maaten, L., Weinberger, K.: Stochastic triplet embedding. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing, IEEE, pp. 1–6 (2012)Google Scholar
  19. 20.
    Bunte, K., Haase, S., Biehl, M., Villmann, T.: Stochastic neighbor embedding (SEN) for dimension reduction and visualization using arbitrary divergences. 90, 23–45 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Kailash Nagarajan
    • 1
    Email author
  • J Ananthu
    • 2
  • Vijay Krishna Menon
    • 2
  • K. P. Soman
    • 2
  • E. A. Gopalakrishnan
    • 2
  • Ajith Ramesh
    • 3
  1. 1.Department of Mechanical EngineeringAmrita Vishwa VidyapeethamAmritapuriIndia
  2. 2.Center for Computational Engineering and Networking (CEN)Amrita School of Engineering, Amrita Vishwa VidyapeethamCoimbatoreIndia
  3. 3.Department of Mechanical EngineeringAmrita School of Engineering, Amrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations