Operations on Integral Lifts of K(n)

  • Jack MoravaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 309)


This very rough sketch is a sequel to [27, 28]; it presents evidence that operations on lifts of the functors K(n) to cohomology theories with values in modules over valuation rings \({\mathfrak {o}_L}\) of local number fields, indexed by Lubin–Tate groups of such fields, are extensions of the groups of automorphisms of the associated group laws, by the exterior algebras on the normal bundle to the orbit of the group law in the space of lifts.


Stable homotopy Perfectoid fields Koszul construction Lubin-Tate theory Morava K-theory 


  1. 1.
    Angeltveit, V.: Uniqueness of Morava \(K\)-theory. Compos. Math. 147, 633 – 648 (2011).
  2. 2.
    Araki, S.: Typical Formal Groups in Complex Cobordism and K-Theory. Lectures in Mathematics, Kyoto University, No. 6. Kinokuniya Book-Store Co., Tokyo (1973)Google Scholar
  3. 3.
    Atiyah, M.F., Tall, D.O.: Group representations, \(\Lambda \)-rings and the \(J\)-homomorphism. Topology 8, 253–297 (1969)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baas, N.A.: On bordism theory of manifolds with singularities. Math. Scand. 33(1973), 279–302 (1974)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baker, A.: Isogenies of supersingular elliptic curves over finite fields and operations in elliptic cohomology. arXiv:0712.2052
  6. 6.
    Behrens, M., Lawson, T.: Topological automorphic forms. Mem. AM 204, 958 (2010). arXiv:math/0702719MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bousfield, A.K., Kan, D.: Homotopy limits, completions and localizations. Springer LNM 304 (1972)Google Scholar
  8. 8.
    Cartier, P.: Relévements des groupes formels commutatifs, Seminaire Bourbaki 359. Springer LNM 179, 217–230 (1971)Google Scholar
  9. 9.
    Clarke, F.: \(p\)-adic Analysis and Operations in \(K\)-Theory. Groupe de Travail d’analyse Ultramétrique tome. 14(15), 1–12 (1986–1987).
  10. 10.
    Devinatz, E., Hopkins, M.: The action of the Morava stabilizer group on the Lubin-Tate moduli space of lifts. Am. J. Math. 117, 669–710 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dugger, D.: A primer on homotopy colimits.
  12. 12.
    Elmendorf, A., Kriz, I., Mandell, M., May, J.P.: Rings, modules, and algebras in stable homotopy theory. Mathematical Surveys and Monographs 47, AMS (1997)Google Scholar
  13. 13.
    Goerss, P.: Topological modular forms [after Hopkins, Miller and Lurie], Séminaire Bourbaki 2008/2009. Exp. 1005, Astérisque 332, 221–255 (2010)Google Scholar
  14. 14.
    Goerss, P., Hopkins, M.J.: Moduli spaces of commutative ring spectra In: Structured Ring Spectra. LMS Lecture Notes, vol. 315, pp. 151–200. CUP (2004)Google Scholar
  15. 15.
    Hopkins, M.J.: Lectures on Lubin-Tate spaces, Arizona Winter School (2019).
  16. 16.
    Hopkins, M.J., Lurie, J.: On Brauer groups of Lubin-Tate spectra I.
  17. 17.
    Hovey, M.: Operations and co-operations in Morava \(E\)-theory. Homol. Homotopy Appl. 6, 201–236 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hovey, M., Strickland, N.: Morava \(K\)-theories and localisation. Memoirs AMS, vol. 139 no. 666 (1999)Google Scholar
  19. 19.
    Katz, N.M.: \(p\)-adic properties of modular schemes and modular forms. In.: Modular Functions of One Variable III, vol. 350, pp. 69–190. Springer LNM (1973)Google Scholar
  20. 20.
    Katz, N.M., Oda, T.: On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ. 8, 199–213 (1968)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lang, S.: Cyclotomic fields I and II Springer Graduate Texts in Mathematics. vol. 121 (1990)CrossRefGoogle Scholar
  22. 22.
    Lubin, J., Tate, J.: Formal moduli for one-parameter formal Lie groups. Bull. Soc. Math. France 94, 49–59 (1966)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lurie, J.: Higher algebra.
  24. 24.
    Morava, J.: Noetherian localisations of categories of cobordism comodules. Ann. Math. 121, 1–39 (1985)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Morava, J.: The Weil group as automorphisms of the Lubin-Tate group. Journées de Géométrie Algébrique de Rennes I, Astérisque, 63, pp. 169–177. Societe mathematique de Franc, Paris (1979)Google Scholar
  26. 26.
    Morava, J.: Stable homotopy and local number theory. In: Algebraic Analysis, Geometry, and Number Theory, pp. 291–305. JHU Press, Baltimore (1989)Google Scholar
  27. 27.
    Morava, J.: Local fields and extraordinary \(K\)-theory. arXiv:1207.4011
  28. 28.
    Morava, J.: Complex orientations for THH of some perfectoid fields. In: Homotopy theory: tools and applications. Contemporary Mathematics, vol. 729, pp. 221–237. AMS (2019).
  29. 29.
    Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ravenel, D.C.: Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, vol. 121. Academic Press (1986)Google Scholar
  31. 31.
    Rezk, C.: Notes on the Hopkins-Miller theorem. In: Homotopy Theory via Algebraic Geometry and Group Representations. Contemporary Mathematics, vol. 220, pp. 313–366. AMS (1998)Google Scholar
  32. 32.
    Rezk, C.: The congruence criterion for power operations in Morava \(E\)-theory. Homol. Homotopy Appl. 11, 327–379 (2009). arXiv:0902.2499MathSciNetCrossRefGoogle Scholar
  33. 33.
    Schwänzl, R., Vogt, R.M., Waldhausen, F.: Adjoining roots of unity to \(E_\infty \) ring spectra. In: Homotopy Invariant Algebraic Structures. Contemporary Mathematics, vol. 239, pp. 245–249. AMS (1999)Google Scholar
  34. 34.
  35. 35.
    Segal, G.: Classifying spaces and spectral sequences. IHES Publ. Math. 34, 105–112 (1968)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Serre, J.P.: Local class field theory. In: Algebraic Number Theory, pp. 128–161. Thompson, Brighton (1987)Google Scholar
  37. 37.
    Serre, J.P.: A course in arithmetic. Springer Graduate Texts. vol. 7 (1973)CrossRefGoogle Scholar
  38. 38.
    Shimada, N., Yagita, N.: Multiplications in the complex bordism theory with singularities. Publ. Res. Inst. Math. Sci. 12, 259–293 (1976/77)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sullivan, D.: Singularities in spaces. In: Proceedings of Liverpool Singularities Symposium II, vol. 209, pp. 196–206. Springer LNM (1971)Google Scholar
  40. 40.
    Swan, R.: The Grothendieck ring of a finite group. Topology 2, 85–110 (1963)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tate, J.: Number theoretic background. In: Automorphic Forms, Representations and \(L\)-Functions. Proceedings of Symposia in Pure Mathematics, vol. XXXIII, pp. 3–26. AMS (1979)Google Scholar
  42. 42.
    Weibel, C.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. vol. 38 (1994)Google Scholar
  43. 43.
    Weil, A.: Basic Number Theory, vol. 144, 3rd edn. Springer Grundlehren der Mathematischen Wissenschaften (1974)Google Scholar
  44. 44.
    Würgler, U.: Morava \(K\)-theories: a survey. In: Algebraic topology(Poznan’), vol. 1474, pp. 111–138. Springer LNM (1991)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations