Advertisement

Depth and Simplicity of Ohkawa’s Argument

  • Carles CasacubertaEmail author
Conference paper
  • 11 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 309)

Abstract

This is an expository article about Ohkawa’s theorem stating that acyclic classes of representable homology theories form a set. We provide background in stable homotopy theory and an overview of subsequent advances in the study of Bousfield lattices. As a new result, we prove that there is a proper class of acyclic classes of nonrepresentable homology theories.

Keywords

Spectra Homology theories Acyclicity Bousfield classes 

Notes

Acknowledgements

The author wishes to acknowledge the kind hospitality of the University of Nagoya during the memorial conference for Professor Ohkawa held in August 2015. The content of Sect. 7 is based on joint work of the author with Pau Casassas and Fernando Muro. The author was supported by the Agency for Management of University and Research Grants of Catalonia with references 2014 SGR 114 and 2017 SGR 585, and the Spanish Ministry of Economy and Competitiveness under AEI/FEDER research grants MTM2013-42178-P and MTM2016-76453-C2-2-P, as well as grant MDM-2014-0445 awarded to the Barcelona Graduate School of Mathematics.

References

  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Adams, J.F.: A variant of E. H. Brown’s representability theorem. Topology 10, 185–198 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1974)zbMATHGoogle Scholar
  4. 4.
    Beardsley, J.: The Bousfield lattice of \(p\)-local harmonic spectra. Preprint (2013)Google Scholar
  5. 5.
    Bousfield, A.K.: The localization of spectra with respect to homology. Topology 18, 257–281 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bousfield, A.K.: The Boolean algebra of spectra. Comment. Math. Helv. 54, 368–377 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brown, E.H.: Cohomology theories. Ann. Math. 75(2), 467–484 (1962)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Casacuberta, C., Gutiérrez, J.J., Rosický, J.: A generalization of Ohkawa’s theorem. Compos. Math. 150, 893–902 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Casacuberta, C., Rosický, J.: Combinatorial homotopy categories. In this volumeGoogle Scholar
  10. 10.
    Dwyer, W.G., Palmieri, J.H.: Ohkawa’s theorem: there is a set of Bousfield classes. Proc. Am. Math. Soc. 129, 881–886 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dwyer, W.G., Palmieri, J.H.: The Bousfield lattice for truncated polynomial algebras. Homol. Homotopy Appl. 10, 413–436 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton Mathematical Series, vol. 15. Princeton University Press, Princeton (1952)Google Scholar
  13. 13.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  14. 14.
    Hovey, M.: Cohomological Bousfield classes. J. Pure Appl. Algebra 103, 45–59 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hovey, M., Palmieri, J.H.: The structure of the Bousfield lattice. In: Meyer, J.-P., Morava, J., Wilson, W.S. (eds.), Homotopy Invariant Algebraic Structures. Contemporary Mathematics, vol. 239. American Mathematical Society, Providence (1999)Google Scholar
  16. 16.
    Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic Stable Homotopy Theory. Memoirs of the American Mathematical Society, vol. 128, no. 610. American Mathematical Society, Providence (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hovey, M., Strickland, N.P.: Morava \(K\)-Theories and Localisation. Memoirs of the American Mathematical Society, vol. 139, no. 666. American Mathematical Society, Providence (1999)Google Scholar
  18. 18.
    Iyengar, S.B., Krause, H.: The Bousfield lattice of a triangulated category and stratification. Math. Z. 273, 1215–1241 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kato, R., Okajima, H., Shimomura, K.: Notes on an algebraic stable homotopy category. In this volumeGoogle Scholar
  20. 20.
    Margolis, H.R.: Spectra and the Steenrod Algebra. North-Holland Mathematical Library, vol. 29. Elsevier, New York (1983)Google Scholar
  21. 21.
    Milnor, J.: On axiomatic homology theory. Pacific J. Math. 12, 337–341 (1962)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Neeman, A.: The chromatic tower for \({\rm D}(R)\). Topology 31, 519–532 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Neeman, A.: Oddball Bousfield classes. Topology 39, 931–935 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)Google Scholar
  25. 25.
    Ohkawa, T.: The injective hull of homotopy types with respect to generalized homology functors. Hiroshima Math. J. 19, 631–639 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ravenel, D.C.: Localization with respect to certain periodic homology theories. Am. J. Math. 106, 351–414 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ravenel, D.C.: Complex Cobordism and Stable Homotopy Groups of Spheres. Pure and Applied Mathematics, vol. 121. Academic, Orlando (1986)Google Scholar
  28. 28.
    Rosický, J.: Generalized Brown representability in homotopy categories. Theory Appl. Categ. 14, 451–479 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Rudyak, Y.B.: On Thom Spectra, Orientability, and Cobordism. Springer Monographs in Mathematics. Springer, Berlin (1998)zbMATHGoogle Scholar
  30. 30.
    Spanier, E.H.: Duality and \(S\)-theory. Bull. Am. Math. Soc. 62, 194–203 (1956)CrossRefGoogle Scholar
  31. 31.
    Stevenson, G.: An extension of Dwyer’s and Palmieri’s proof of Ohkawa’s theorem on Bousfield classes (2011) (Unpublished manuscript)Google Scholar
  32. 32.
    Strickland, N.P.: Counting Bousfield classes (1997) (Unpublished manuscript)Google Scholar
  33. 33.
    Switzer, R.M.: Algebraic Topology – Homology and Homotopy. Classics in Mathematics. Springer, Berlin (2002)Google Scholar
  34. 34.
    Whitehead, G.W.: Generalized homology theories. Trans. Am. Math. Soc. 102, 227–283 (1962)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Whitehead, J.H.C.: Combinatorial homotopy. Part I. Bull. Am. Math. Soc. 55, 213–245 (1949)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wolcott, L.: Bousfield lattices of non-Noetherian rings: some quotients and products. Homol. Homotopy Appl. 16, 205–229 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wolcott, L.: Variations of the telescope conjecture and Bousfield lattices for localized categories of spectra. Pacific J. Math. 276, 483–509 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Facultat de Matemàtiques i Informàtica, Universitat de Barcelona (UB)BarcelonaSpain

Personalised recommendations