Advertisement

Galectins in Host Defense Against Microbial Infections

  • Fang-Yen Li
  • Sheng-Fan Wang
  • Emerson S. Bernardes
  • Fu-Tong LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1204)

Abstract

Galectins are differentially expressed in a variety of cell types, including immune cells, and characterized by the affinity for β-galactoside–containing glycans. There are fifteen galectin members in mammals. Galectins are primarily located intracellularly, but can be secreted outside the cells. They exhibit pivotal roles during microbial infection, such as pathogen recognition and innate and adaptive immunity, and this review aims to discuss the functions of endogenous galectins during infection by four main types of microbes (bacteria, fungi, viruses, and parasites). Extracellular galectins are known to exert a bacteriostatic effect on some bacteria via association with bacterial glycans, whereas cytosolic galectins are recognized to control antibacterial autophagy by binding to luminal host glycans of ruptured endo-lysosomes. With regard to fungal infections, most studies deal with galectin-3. Galectin-3 modulates fungal burdens, the adaptive immune responses, and mortality in fungi-infected mice, which has been shown to be associated with its ability to manipulate fungicidal functions in neutrophils and cytokine expression in dendritic cells. Some viral infections, such as human immunodeficiency virus (HIV) and influenza virus infections, can be regulated by galectin-1 and -3, and they affect various aspects of viral infections, including viral binding, replication, budding, transmission, and infection-associated inflammation. Functions of galectins during a number of different parasitic infections have been identified in studies using galectin-knockout mice. Different parasitic infections have consistently demonstrated a role of galectins in tuning T helper immune responses in infected hosts.

Keywords

Galectin Bacterium Virus Fungus Parasite Immune response 

References

  1. Acosta-Rodriguez EV, Montes CL, Motran CC, Zuniga EI, Liu FT, Rabinovich GA, Gruppi A (2004) Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J Immunol 172(1):493–502CrossRefGoogle Scholar
  2. Alves MJ, Colli W (1975) Glycoproteins from Trypanosoma cruzi: partial purification by gel chromatography. FEBS Lett 52(2):188–190CrossRefGoogle Scholar
  3. Alves CM, Silva DA, Azzolini AE, Marzocchi-Machado CM, Carvalho JV, Pajuaba AC, Lucisano-Valim YM, Chammas R, Liu FT, Roque-Barreira MC, Mineo JR (2010) Galectin-3 plays a modulatory role in the life span and activation of murine neutrophils during early Toxoplasma gondii infection. Immunobiology 215(6):475–485.  https://doi.org/10.1016/j.imbio.2009.08.001CrossRefPubMedGoogle Scholar
  4. Alves CM, Silva DA, Azzolini AE, Marzocchi-Machado CM, Lucisano-Valim YM, Roque-Barreira MC, Mineo JR (2013) Galectin-3 is essential for reactive oxygen species production by peritoneal neutrophils from mice infected with a virulent strain of Toxoplasma gondii. Parasitology 140(2):210–219.  https://doi.org/10.1017/S0031182012001473CrossRefPubMedGoogle Scholar
  5. Amsen D, Helbig C, Backer RA (2015) Notch in T cell differentiation: all things considered. Trends Immunol 36(12):802–814.  https://doi.org/10.1016/j.it.2015.10.007CrossRefPubMedGoogle Scholar
  6. Arbeitskreis Blut UBBK (2009) Influenza virus. Transfus Med Hemotherapy 36(1):32–39.  https://doi.org/10.1159/000197314CrossRefGoogle Scholar
  7. Baker DG (1998) Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 11(2):231–266CrossRefGoogle Scholar
  8. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269 (33):20807–20810Google Scholar
  9. Benatar AF, Garcia GA, Bua J, Cerliani JP, Postan M, Tasso LM, Scaglione J, Stupirski JC, Toscano MA, Rabinovich GA, Gomez KA (2015) Galectin-1 prevents infection and damage induced by Trypanosoma cruzi on cardiac cells. PLoS Negl Trop Dis 9(10):e0004148.  https://doi.org/10.1371/journal.pntd.0004148CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berman J (2006) Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9(6):595–601.  https://doi.org/10.1016/j.mib.2006.10.007CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC (2006) Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am J Pathol 168(6):1910–1920.  https://doi.org/10.2353/ajpath.2006.050636CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bhaumik P, St-Pierre G, Milot V, St-Pierre C, Sato S (2013) Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. J Immunol 190(2):630–640.  https://doi.org/10.4049/jimmunol.1103197CrossRefPubMedGoogle Scholar
  13. Bickle Q, Helmby H (2007) Lack of galectin-3 involvement in murine intestinal nematode and schistosome infection. Parasite Immunol 29(2):93–100.  https://doi.org/10.1111/j.1365-3024.2006.00923.xCrossRefPubMedGoogle Scholar
  14. Bracq L, Xie M, Benichou S, Bouchet J (2018) Mechanisms for cell-to-cell transmission of HIV-1. Front Immunol 9:260.  https://doi.org/10.3389/fimmu.2018.00260CrossRefPubMedPubMedCentralGoogle Scholar
  15. Breuilh L, Vanhoutte F, Fontaine J, van Stijn CM, Tillie-Leblond I, Capron M, Faveeuw C, Jouault T, van Die I, Gosset P, Trottein F (2007) Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect Immun 75(11):5148–5157.  https://doi.org/10.1128/IAI.02006-06CrossRefPubMedPubMedCentralGoogle Scholar
  16. Calero-Bernal R, Gennari SM (2019) Clinical toxoplasmosis in dogs and cats: an update. Front Vet Sci 6:54.  https://doi.org/10.3389/fvets.2019.00054CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676.  https://doi.org/10.1093/glycob/cwm026CrossRefPubMedGoogle Scholar
  18. Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, Johansen T, Deretic V (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39(1):13–27.  https://doi.org/10.1016/j.devcel.2016.08.003CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen SJ, Zhang YX, Huang SG, Lu FL (2017) Galectins expressed differently in genetically susceptible C57BL/6 and resistant BALB/c mice during acute ocular Toxoplasma gondii infection. Parasitology 144(8):1064–1072.  https://doi.org/10.1017/S0031182017000270CrossRefPubMedGoogle Scholar
  20. Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT (2018) Galectin-3 enhances Avian H5N1 influenza A virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am J Pathol 188(4):1031–1042.  https://doi.org/10.1016/j.ajpath.2017.12.014CrossRefPubMedGoogle Scholar
  21. Cheng YL, Wu YW, Kuo CF, Lu SL, Liu FT, Anderson R, Lin CF, Liu YL, Wang WY, Chen YD, Zheng PX, Wu JJ, Lin YS (2017) Galectin-3 inhibits galectin-8/parkin-mediated ubiquitination of group A streptococcus. MBio 8(4).  https://doi.org/10.1128/mbio.00899-17
  22. Cunha-Neto E, Chevillard C (2014) Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014:683230.  https://doi.org/10.1155/2014/683230CrossRefPubMedPubMedCentralGoogle Scholar
  23. da Silva AA, Teixeira TL, Teixeira SC, Machado FC, Dos Santos MA, Tomiosso TC, Tavares PCB, Brigido R, Martins FA, Silva NSL, Rodrigues CC, Roque-Barreira MC, Mortara RA, Lopes DS, Avila VMR, da Silva CV (2017) Galectin-3: a friend but not a foe during Trypanosoma cruzi experimental infection. Front Cell Infect Microbiol 7:463.  https://doi.org/10.3389/fcimb.2017.00463CrossRefPubMedPubMedCentralGoogle Scholar
  24. de Araujo Jorge TC, de Souza W (1984) Effect of carbohydrates, periodate and enzymes in the process of endocytosis of Trypanosoma cruzi by macrophages. Acta Trop 41(1):17–28PubMedGoogle Scholar
  25. de Oliveira FL, Dos Santos SN, Ricon L, da Costa TP, Pereira JX, Brand C, Fermino ML, Chammas R, Bernardes ES, El-Cheikh MC (2018) Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation. Sci Rep 8(1):3495.  https://doi.org/10.1038/s41598-018-21409-7CrossRefPubMedPubMedCentralGoogle Scholar
  26. Debierre-Grockiego F, Niehus S, Coddeville B, Elass E, Poirier F, Weingart R, Schmidt RR, Mazurier J, Guerardel Y, Schwarz RT (2010) Binding of Toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. J Biol Chem 285(43):32744–32750.  https://doi.org/10.1074/jbc.M110.137588CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dembele BP, Chagan-Yasutan H, Niki T, Ashino Y, Tangpukdee N, Shinichi E, Krudsood S, Kano S, Hattori T (2016) Plasma levels of Galectin-9 reflect disease severity in malaria infection. Malar J 15(1):403.  https://doi.org/10.1186/s12936-016-1471-7CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dos Santos SN, Sheldon H, Pereira JX, Paluch C, Bridges EM, El-Cheikh MC, Harris AL, Bernardes ES (2017) Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget 8(30):49484–49501.  https://doi.org/10.18632/oncotarget.17718CrossRefPubMedPubMedCentralGoogle Scholar
  29. Duran-Rehbein GA, Vargas-Zambrano JC, Cuellar A, Puerta CJ, Gonzalez JM (2014) Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. Parasite 21:38.  https://doi.org/10.1051/parasite/2014040CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fang S, Zhang K, Wang T, Wang X, Lu X, Peng B, Wu W, Zhang R, Chen S, Zhang R, Xue H, Yu M, Cheng J (2014) Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus. Appl Microbiol Biotechnol 98(23):9691–9701.  https://doi.org/10.1007/s00253-014-5852-yCrossRefPubMedGoogle Scholar
  31. Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K, Hayashi K, Simpson AJ, Rossi AG, Haslett C, Sethi T (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172(2):395–405.  https://doi.org/10.2353/ajpath.2008.070870CrossRefPubMedPubMedCentralGoogle Scholar
  32. Feeley EM, Pilla-Moffett DM, Zwack EE, Piro AS, Finethy R, Kolb JP, Martinez J, Brodsky IE, Coers J (2017) Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114(9):E1698–E1706.  https://doi.org/10.1073/pnas.1615771114CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC, Miaw SC, Hsu DK, Wu-Hsieh BA, Liu FT (2013) Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 183(4):1209–1222.  https://doi.org/10.1016/j.ajpath.2013.06.017CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fermino ML, Dias FC, Lopes CD, Souza MA, Cruz AK, Liu FT, Chammas R, Roque-Barreira MC, Rabinovich GA, Bernardes ES (2013) Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection. Eur J Immunol 43(7):1806–1817.  https://doi.org/10.1002/eji.201343381CrossRefPubMedGoogle Scholar
  35. Fermino ML, Dylon LS, Cecilio NT, Santos SN, Toscano MA, Dias-Baruffi M, Roque-Barreira MC, Rabinovich GA, Bernardes ES (2016) Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization. Mol Immunol 76:22–34.  https://doi.org/10.1016/j.molimm.2016.06.005CrossRefPubMedGoogle Scholar
  36. Fogel S, Guittaut M, Legrand A, Monsigny M, Hebert E (1999) The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 9(4):383–387CrossRefGoogle Scholar
  37. Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ (2006) Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol 8(1):44–54.  https://doi.org/10.1111/j.1462-5822.2005.00599.x
  38. Garcin PO, Nabi IR, Pante N (2015) Galectin-3 plays a role in minute virus of mice infection. Virology 481:63–72.  https://doi.org/10.1016/j.virol.2015.02.019CrossRefPubMedGoogle Scholar
  39. Ghebremedhin B (2014) Human adenovirus: viral pathogen with increasing importance. Eur J Microbiol Immunol 4(1):26–33.  https://doi.org/10.1556/EuJMI.4.2014.1.2CrossRefGoogle Scholar
  40. Giordanengo L, Gea S, Barbieri G, Rabinovich GA (2001) Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this beta-galactoside-binding protein in cardiac Chagas’ disease. Clin Exp Immunol 124(2):266–273CrossRefGoogle Scholar
  41. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341(6151):1250–1253.  https://doi.org/10.1126/science.1240988CrossRefPubMedPubMedCentralGoogle Scholar
  42. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A 106(15):6226–6231.  https://doi.org/10.1073/pnas.0811045106CrossRefPubMedPubMedCentralGoogle Scholar
  43. Huang WC, Chen HL, Chen HY, Peng KP, Lee Y, Huang LM, Chang LY, Liu FT (2016) Galectin-3 and its genetic variation rs4644 modulate enterovirus 71 infection. PLoS ONE 11(12):e0168627.  https://doi.org/10.1371/journal.pone.0168627CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, Phinney B, Johansen T, Deretic V (2018) Galectins control mTOR in response to endomembrane damage. Mol Cell 70(1):120–135 e128.  https://doi.org/10.1016/j.molcel.2018.03.009
  45. Kasai K, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119(1):1–8CrossRefGoogle Scholar
  46. Kevric I, Cappel MA, Keeling JH (2015) New world and old world leishmania infections: a practical review. Dermatol Clin 33(3):579–593.  https://doi.org/10.1016/j.det.2015.03.018CrossRefPubMedGoogle Scholar
  47. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32.  https://doi.org/10.1172/JCI73939CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kleshchenko YY, Moody TN, Furtak VA, Ochieng J, Lima MF, Villalta F (2004) Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect Immun 72(11):6717–6721.  https://doi.org/10.1128/IAI.72.11.6717-6721.2004CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kulkarni R, Prasad A (2017) Exosomes derived from HIV-1 infected DCs mediate viral trans-infection via fibronectin and Galectin-3. Sci Rep 7(1):14787.  https://doi.org/10.1038/s41598-017-14817-8CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li S-W, Yang T-C, Lai C-C, Huang S-H, Liao J-M, Wan L, Lin Y-J, Lin C-W (2014) Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol 738:125–132.  https://doi.org/10.1016/j.ejphar.2014.05.028CrossRefPubMedGoogle Scholar
  51. Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT (2019) Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 29(2):151–162.  https://doi.org/10.1093/glycob/cwy095CrossRefPubMedGoogle Scholar
  52. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5(1):29–41 (nrc1527 [pii])  https://doi.org/10.1038/nrc1527
  53. Liu J, Xiao S, Huang S, Pei F, Lu F (2016a) Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model. Parasitol Res 115(2):587–595.  https://doi.org/10.1007/s00436-015-4775-6CrossRefPubMedGoogle Scholar
  54. Liu J, Huang S, Su XZ, Song J, Lu F (2016b) Blockage of galectin-receptor interactions by alpha-lactose exacerbates Plasmodium berghei-induced pulmonary immunopathology. Sci Rep 6:32024.  https://doi.org/10.1038/srep32024CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lopez-Bueno A, Segovia JC, Bueren JA, O’Sullivan MG, Wang F, Tattersall P, Almendral JM (2008) Evolution to pathogenicity of the parvovirus minute virus of mice in immunodeficient mice involves genetic heterogeneity at the capsid domain that determines tropism. J Virol 82(3):1195–1203.  https://doi.org/10.1128/JVI.01692-07CrossRefPubMedGoogle Scholar
  56. Machado FC, Cruz L, da Silva AA, Cruz MC, Mortara RA, Roque-Barreira MC, da Silva CV (2014) Recruitment of galectin-3 during cell invasion and intracellular trafficking of Trypanosoma cruzi extracellular amastigotes. Glycobiology 24(2):179–184.  https://doi.org/10.1093/glycob/cwt097CrossRefPubMedGoogle Scholar
  57. Malet JK, Cossart P, Ribet D (2017) Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol 19(4).  https://doi.org/10.1111/cmi.12682
  58. Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509(7500):366–370.  https://doi.org/10.1038/nature13157CrossRefPubMedGoogle Scholar
  59. Montespan C, Marvin SA, Austin S, Burrage AM, Roger B, Rayne F, Faure M, Campell EM, Schneider C, Reimer R, Grünewald K, Wiethoff CM, Wodrich H (2017) Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog 13(2):e1006217.  https://doi.org/10.1371/journal.ppat.1006217CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moody TN, Ochieng J, Villalta F (2000) Novel mechanism that Trypanosoma cruzi uses to adhere to the extracellular matrix mediated by human galectin-3. FEBS Lett 470(3):305–308CrossRefGoogle Scholar
  61. Nicklas W, Kraft V, Meyer B (1993) Contamination of transplantable tumors, cell lines, and monoclonal antibodies with rodent viruses. Lab Anim Sci 43(4):296–300PubMedGoogle Scholar
  62. Oakley MS, Majam V, Mahajan B, Gerald N, Anantharaman V, Ward JM, Faucette LJ, McCutchan TF, Zheng H, Terabe M, Berzofsky JA, Aravind L, Kumar S (2009) Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice. PLoS ONE 4(8):e6793.  https://doi.org/10.1371/journal.pone.0006793CrossRefPubMedPubMedCentralGoogle Scholar
  63. Oliveira FL, Frazao P, Chammas R, Hsu DK, Liu FT, Borojevic R, Takiya CM, El-Cheikh MC (2007) Kinetics of mobilization and differentiation of lymphohematopoietic cells during experimental murine schistosomiasis in galectin-3 -/- mice. J Leukoc Biol 82(2):300–310.  https://doi.org/10.1189/jlb.1206747CrossRefPubMedGoogle Scholar
  64. Oliveira FL, Chammas R, Ricon L, Fermino ML, Bernardes ES, Hsu DK, Liu FT, Borojevic R, El-Cheikh MC (2009) Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells. Glycobiology 19(11):1248–1258.  https://doi.org/10.1093/glycob/cwp120CrossRefPubMedGoogle Scholar
  65. Oliveira FL, Bernardes ES, Brand C, dos Santos SN, Cabanel MP, Arcanjo KD, Brito JM, Borojevic R, Chammas R, El-Cheikh MC (2016) Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation. Cell Tissue Res 363(2):411–426.  https://doi.org/10.1007/s00441-015-2203-yCrossRefPubMedGoogle Scholar
  66. Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J, Hirabayashi J, Sato S, Tremblay MJ (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 174(7):4120.  https://doi.org/10.4049/jimmunol.174.7.4120CrossRefPubMedGoogle Scholar
  67. Palframan SL, Kwok T, Gabriel K (2012) Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2:92.  https://doi.org/10.3389/fcimb.2012.00092CrossRefPubMedPubMedCentralGoogle Scholar
  68. Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O (2016) Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect Immun 84(4):1184–1193.  https://doi.org/10.1128/IAI.01299-15CrossRefPubMedPubMedCentralGoogle Scholar
  69. Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, Sansonetti P (2010) Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12(4):530–544.  https://doi.org/10.1111/j.1462-5822.2009.01415.xCrossRefPubMedGoogle Scholar
  70. Pelletier I, Sato S (2002) Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 277(20):17663–17670.  https://doi.org/10.1074/jbc.M201562200CrossRefPubMedGoogle Scholar
  71. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739.  https://doi.org/10.1038/378736a0CrossRefPubMedGoogle Scholar
  72. Pineda MA, Cuervo H, Fresno M, Soto M, Bonay P (2015a) Lack of Galectin-3 prevents cardiac fibrosis and effective immune responses in a murine model of Trypanosoma cruzi infection. J Infect Dis 212(7):1160–1171.  https://doi.org/10.1093/infdis/jiv185CrossRefPubMedGoogle Scholar
  73. Pineda MA, Corvo L, Soto M, Fresno M, Bonay P (2015b) Interactions of human galectins with Trypanosoma cruzi: binding profile correlate with genetic clustering of lineages. Glycobiology 25(2):197–210.  https://doi.org/10.1093/glycob/cwu103CrossRefPubMedGoogle Scholar
  74. Poli G (2013) Cell-to-cell vs. cell-free HIV-1 transmission from macrophages to CD4+ T lymphocytes: lessons from the virology textbook. AIDS 27(14):2307–2308.  https://doi.org/10.1097/qad.0b013e328363619a
  75. Poncini CV, Ilarregui JM, Batalla EI, Engels S, Cerliani JP, Cucher MA, van Kooyk Y, Gonzalez-Cappa SM, Rabinovich GA (2015) Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via Galectin-1-dependent mechanisms. J Immunol 195(7):3311–3324.  https://doi.org/10.4049/jimmunol.1403019CrossRefPubMedGoogle Scholar
  76. Reignault LC, Barrias ES, Soares Medeiros LC, de Souza W, de Carvalho TM (2014) Structures containing galectin-3 are recruited to the parasitophorous vacuole containing Trypanosoma cruzi in mouse peritoneal macrophages. Parasitol Res 113(6):2323–2333.  https://doi.org/10.1007/s00436-014-3887-8CrossRefPubMedGoogle Scholar
  77. Ruas LP, Bernardes ES, Fermino ML, de Oliveira LL, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC (2009) Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS One 4(2):e4519.  https://doi.org/10.1371/journal.pone.0004519CrossRefPubMedPubMedCentralGoogle Scholar
  78. Spackman E (2008) A brief introduction to the avian influenza virus. Methods Mol Biol 436:1–6.  https://doi.org/10.1007/978-1-59745-279-3_1CrossRefPubMedGoogle Scholar
  79. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301.  https://doi.org/10.1038/nm.2103CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sturge CR, Benson A, Raetz M, Wilhelm CL, Mirpuri J, Vitetta ES, Yarovinsky F (2013) TLR-independent neutrophil-derived IFN-gamma is important for host resistance to intracellular pathogens. Proc Natl Acad Sci U S A 110(26):10711–10716.  https://doi.org/10.1073/pnas.1307868110CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tarleton RL (2015) CD8 + T cells in Trypanosoma cruzi infection. Semin Immunopathol 37(3):233–238.  https://doi.org/10.1007/s00281-015-0481-9CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385):414–418.  https://doi.org/10.1038/nature10744CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F (2016) Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 35(16):1779–1792.  https://doi.org/10.15252/embj.201694491CrossRefPubMedPubMedCentralGoogle Scholar
  84. Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LG, Rabinovich GA (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8(8):825–834.  https://doi.org/10.1038/ni1482CrossRefPubMedGoogle Scholar
  85. Toscano MA, Tongren JE, de Souza JB, Liu FT, Riley EM, Rabinovich GA (2012) Endogenous galectin-3 controls experimental malaria in a species-specific manner. Parasite Immunol 34(7):383–387.  https://doi.org/10.1111/j.1365-3024.2012.01366.xCrossRefPubMedGoogle Scholar
  86. Van de Vijver KK, Deelder AM, Jacobs W, Van Marck EA, Hokke CH (2006) LacdiNAc- and LacNAc-containing glycans induce granulomas in an in vivo model for schistosome egg-induced hepatic granuloma formation. Glycobiology 16(3):237–243.  https://doi.org/10.1093/glycob/cwj058CrossRefPubMedGoogle Scholar
  87. van den Berg TK, Honing H, Franke N, van Remoortere A, Schiphorst WE, Liu FT, Deelder AM, Cummings RD, Hokke CH, van Die I (2004) LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol 173(3):1902–1907CrossRefGoogle Scholar
  88. van Remoortere A, Hokke CH, van Dam GJ, van Die I, Deelder AM, van den Eijnden DH (2000) Various stages of schistosoma express Lewis(x), LacdiNAc, GalNAcbeta1-4 (Fucalpha1-3)GlcNAc and GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc carbohydrate epitopes: detection with monoclonal antibodies that are characterized by enzymatically synthesized neoglycoproteins. Glycobiology 10(6):601–609CrossRefGoogle Scholar
  89. Vasta GR (2012) Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol 946:21–36.  https://doi.org/10.1007/978-1-4614-0106-3_2CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang SM, Liu CC, Tseng HW, Wang JR, Huang CC, Chen YJ, Yang YJ, Lin SJ, Yeh TF (1999) Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis 29(1):184–190.  https://doi.org/10.1086/520149CrossRefPubMedGoogle Scholar
  91. Wang SM, Lei HY, Huang KJ, Wu JM, Wang JR, Yu CK, Su IJ, Liu CC (2003) Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 188(4):564–570.  https://doi.org/10.1086/376998CrossRefPubMedGoogle Scholar
  92. Wang SF, Tsao CH, Lin YT, Hsu DK, Chiang ML, Lo CH, Chien FC, Chen P, Arthur Chen YM, Chen HY, Liu FT (2014) Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 24(11):1022–1035.  https://doi.org/10.1093/glycob/cwu064CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT (2018) Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 28(6):392–405.  https://doi.org/10.1093/glycob/cwy017CrossRefPubMedGoogle Scholar
  94. Westman J, Moran G, Mogavero S, Hube B, Grinstein S (2018) Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. MBio 9(5).  https://doi.org/10.1128/mbio.01226-18
  95. White NJ (2018) Anaemia and malaria. Malar J 17(1):371.  https://doi.org/10.1186/s12936-018-2509-9CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wu SY, Yu JS, Liu FT, Miaw SC, Wu-Hsieh BA (2013) Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol 190(7):3427–3437.  https://doi.org/10.4049/jimmunol.1202122CrossRefPubMedGoogle Scholar
  97. Wu SY, Huang JH, Chen WY, Chan YC, Lin CH, Chen YC, Liu FT, Wu-Hsieh BA (2017) Cell intrinsic galectin-3 attenuates neutrophil ROS-dependent killing of Candida by modulating CR26 downstream syk activation. Front Immunol 8:48.  https://doi.org/10.3389/fimmu.2017.00048CrossRefPubMedPubMedCentralGoogle Scholar
  98. Xiao S, Liu J, Huang S, Lu F (2016) Increased Gal-9 and Tim-3 expressions during liver damage in a murine malarial model. Parasitol Res 115(2):663–672.  https://doi.org/10.1007/s00436-015-4784-5CrossRefPubMedGoogle Scholar
  99. Xue J, Fu C, Cong Z, Peng L, Peng Z, Chen T, Wang W, Jiang H, Wei Q, Qin C (2017) Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 284(1):97–113.  https://doi.org/10.1111/febs.13955CrossRefPubMedGoogle Scholar
  100. Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, Wang JR, Wang CH, Wu CL, Shiau AL (2011) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 85(19):10010–10020.  https://doi.org/10.1128/JVI.00301-11CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhuo Y, Bellis SL (2011) Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286(8):5935–5941.  https://doi.org/10.1074/jbc.R110.191429CrossRefPubMedGoogle Scholar
  102. Zuniga E, Rabinovich GA, Iglesias MM, Gruppi A (2001a) Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 70(1):73–79PubMedGoogle Scholar
  103. Zuniga E, Gruppi A, Hirabayashi J, Kasai KI, Rabinovich GA (2001b) Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival. Infect Immun 69(11):6804–6812.  https://doi.org/10.1128/IAI.69.11.6804-6812.2001CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Fang-Yen Li
    • 1
  • Sheng-Fan Wang
    • 2
  • Emerson S. Bernardes
    • 3
  • Fu-Tong Liu
    • 1
    Email author
  1. 1.Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
  2. 2.Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Nuclear and Energy Research Institute - IPENSão PauloBrazil

Personalised recommendations