Advertisement

Current Perspectives and Advancements of Perovskite Photovoltaic Cells

  • Chandni DeviEmail author
  • Rajesh Mehra
Conference paper
  • 21 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)

Abstract

Perovskite photovoltaic cells have pulled in much consideration on account of their fast ascent to 23% PCE. Here, in this paper the quick development of PSCs has been reviewed, as they entered into the stage that could upgrade the industry of photovoltaics. Specifically, in this paper, the recent advancements in the architectures of perovskite photovoltaic cells, various blends used to develop perovskite photoactive layers have been portrayed. The remarkable advances of long-haul strength are talked about, and this paper gives an attitude towards what the eventual fate of PSCs may soon bring the photovoltaic group.

Keywords

ETM HTM Perovskite layer Photovoltaics Solar cells 

References

  1. 1.
    International Energy Agency (IEA): Solar Photovoltaic Energy. Technology Roadmap (2014)Google Scholar
  2. 2.
    OECD, IEA: Renewable Energy. Medium-Term Market Report 2014. Market Analysis and Forecasts to 2020. Executive Summary (2014)Google Scholar
  3. 3.
    Todorov, T., Gunawan, O., Guha, S.: A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol. Syst. Des. Eng. 1, 370–376 (2016)CrossRefGoogle Scholar
  4. 4.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Domanski, K., et al.: Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016)CrossRefGoogle Scholar
  7. 7.
    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)Google Scholar
  8. 8.
    Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338 (2012)Google Scholar
  9. 9.
    Burschka, J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  10. 10.
    Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seok, S.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)Google Scholar
  11. 11.
    Yang, W.S., et al.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)CrossRefGoogle Scholar
  12. 12.
    Saliba, M., et al.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)CrossRefGoogle Scholar
  13. 13.
    Liu, M.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhou, H.P., et al.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)CrossRefGoogle Scholar
  15. 15.
    Anaraki, E.H., et al.: Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. Energy Environ. Sci 9, 3128–3134 (2016)CrossRefGoogle Scholar
  16. 16.
    Malinkiewicz, O., et al.: Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014)CrossRefGoogle Scholar
  17. 17.
    Jeng, J.Y., et al.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013)CrossRefGoogle Scholar
  18. 18.
    Sun, S., et al.: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014)CrossRefGoogle Scholar
  19. 19.
    Nie, W., et al.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)CrossRefGoogle Scholar
  20. 20.
    H.-S. Kim, et al.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2 (2012)Google Scholar
  21. 21.
    Yi, C., Luo, J.: Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016)Google Scholar
  22. 22.
    David, P., et al.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2017)Google Scholar
  23. 23.
    Snaith, H.J., et al.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRefGoogle Scholar
  24. 24.
    Sum, T.C., Mathews, N.: Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518–2534 (2014)Google Scholar
  25. 25.
    Grätzel, M., Gao, P.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)Google Scholar
  26. 26.
    Boix, P.P., Agarwala, S., Koh, T.M., Mathews, N., Mhaisalkar, S.G.: Perovskite solar cells: beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898–907 (2015)CrossRefGoogle Scholar
  27. 27.
    Bai, S., Wu, Z., et al.: Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6, 10505–10510 (2014)Google Scholar
  28. 28.
    Zhang, M., Yu, H., Lyu, M., Wang, Q., Yun, J.-H., Wang, L.: Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014)CrossRefGoogle Scholar
  29. 29.
    Qiu, Y., Qiu, J., et al.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and 1D TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)Google Scholar
  30. 30.
    Jung, H.S., Park, N.G.: Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015)CrossRefGoogle Scholar
  31. 31.
    Heo, J.H.: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)Google Scholar
  32. 32.
    Grätzel, M., et al.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014)CrossRefGoogle Scholar
  33. 33.
    Holliman, P.J., Williams, A.E.: Perovskite processing for photovoltaics: a spectro-thermal evaluation. J. Mater. Chem. A 2, 19338–19346 (2014)Google Scholar
  34. 34.
    Unger, E.L., et al.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014)CrossRefGoogle Scholar
  35. 35.
    Minemoto, T., Murata, M.: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14, 1428–1433 (2014)CrossRefGoogle Scholar
  36. 36.
    Stranks, S.D., Eperon, G.E.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)Google Scholar
  37. 37.
    Lee, J.W., Seol, D.J., Cho, A.N., Park, N.G.: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014)CrossRefGoogle Scholar
  38. 38.
    Wang, F., Yu, H., Xu, H., Zhao, N.: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120–1126 (2015)CrossRefGoogle Scholar
  39. 39.
    Bai, Y., Zhu, Z., et al.: Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2012)Google Scholar
  40. 40.
    Matsui, T., Seo, J.-Y., et al.: Ionic liquid control crystal growth to enhance planar perovskite solar cells. Adv. Energy Mater. 6 (2016)Google Scholar
  41. 41.
    Rub, M.A., Ameen, S., et al.: Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. CAMSUSCHEM 8, 10–27 (2016)Google Scholar
  42. 42.
    Shirahata, Y., Hamatani, T.: Arsenic and chlorine co-doping to CH3NH3PbI3 perovskite solar cells. Adv. Mater. Phys. Chem. 7 (2013)Google Scholar
  43. 43.
    Abate, A., et al.: Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013)CrossRefGoogle Scholar
  44. 44.
    Staff, D.R., Abate, A., et al.: Influence of ionizing dopants on charge transport in organic semiconductors. Phys. Chem. Chem. Phys. 16, 1132–1138 (2014)Google Scholar
  45. 45.
    Park, S., et al.: Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chem. Sci. 7, 5517–5522 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute for Technical Teachers Training and ResearchChandigarhIndia

Personalised recommendations