Design and Analysis of Higher-Order Sigma Delta Modulator

  • Deepti MalhotraEmail author
  • Alpana Aggarwal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)


The paper focuses on basics of analog-to-digital conversion. Various types of analog-to-digital converters are available. Here, the basics of one of its type, sigma delta, is discussed, starting from quantization and then moving to first-, second-, and third-order structures. The SNR obtained is 62 dB and 61.4 B, 91.9, respectively. Moving toward higher order with same approach causes instability. Therefore, an architecture using feedback or feedforward may be used. Some of the popular higher-order topologies are based on feedback and feedforward arrangements: cascade of resonator-feedback form (CRFB), cascade of resonator-feedforward form (CRFF), cascade of integrator-feedback form (CIFB), and cascade of resonator-feedforward form (CIFF) with SNR achieved as 140 dB, 153.6 dB, 141.8 dB, and 164.4 dB, respectively.


Sigma delta Quantization Higher order Nyquist Oversampling ADC NTF STF 


  1. 1.
    Schreier, R., Temes, G.C.: Understanding Delta Sigma Converters. IEEE pressGoogle Scholar
  2. 2.
    Cherry, J., Snelgrove, W.: Continuos Time Delta Sigma Modulators for High Speed A/D Conversion. Kluwer Academic PublishersGoogle Scholar
  3. 3.
    Park, M., Perrott, M.: A 78 dB SNDR 87 mW, 20 MHz bandwidth continuous–time ∑Δ ADC with VCO-based integrator and quantizer implemented in 0.13 µm at CMOS. IEEE J. Solid State Circuits 44(12), 33 (2009)Google Scholar
  4. 4.
    Dendouga, A., Bouguachal, N., Kouda, S., Barra, S., Lakehal, B.: Contribution to modeling of a non ideal ∑Δ modulator. J. Comput. Electron. (2012)Google Scholar
  5. 5.
    Silva, J., Moon, U., Steensgaard, J., Temes, G.C.: Wideband low-distortion delta sigma ADC topology. Electron. Lett. 37(12), 737–738 (2001)CrossRefGoogle Scholar
  6. 6.
    Temes, G.: Finite amplifier gain and bandwidth effects in switched capacitor filters. IEEE J. Solid States 15, 358–361 (1980)CrossRefGoogle Scholar
  7. 7.
    Harrison, R.R., Charles, C.: A low power low noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuit 38(6) (2003)Google Scholar
  8. 8.
    Matsukawa, K., Nitani, Y., Takayama, M., Obata, K., Dosho, S., Matsukawa, A.: A fifth order continuos time ∑Δ modulator with single op-amp resonator. IEEE J. Solid State Circuit 45(4) (2010)Google Scholar
  9. 9.
    Mitteregger, G., Ebner, C., Mechnig, S., Blon, T., Holuigue, C., Romani, E.: A 20-mW, 640-MHz, CMOS continuous-time ADC with 20 MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB. IEEE J. Solid State Circuits 41(12), 2641–2649 (2006)CrossRefGoogle Scholar
  10. 10.
    Steensgaard, J.: High performances data converters. Ph.D. thesis, Technical University of Denmar, Department of Information Technology (1999)Google Scholar
  11. 11.
    Donida, A., Cellius, R., Nagari, A., Baschirotto, A.: A 40 nm CMOS 1.1 V, 101 dB dynamic range, 1.7 mW continuous time. IEEE Regul. Pap. 62(3) (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations