Advertisement

Pyramid Entropy Source for True Random Number Generator on FPGA

  • Sivaraman Rethinam
  • Sundararaman RajagopalanEmail author
  • Sridevi Arumugham
  • Siva Janakiraman
  • C. Lakshmi
  • Amirtharajan Rengarajan
Conference paper
  • 17 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1089)

Abstract

True random number generator (TRNG) is a crucial part of any modern cryptographic primitives. Designing high entropy TRNG is still a challenging task to compete. Usually, TRNGs use physical mean as random source to generate random numbers which are unpredictable. TRNG has different application but not limited to symmetric key cryptography, random simulation, nonce, user authentication protocols, and gaming. In this work, ring oscillator (RO)-based pyramid entropy source is proposed for generating device-independent true random numbers. The de-synchronization technique has been utilized for extracting the randomness from entropy source wherein linear-feedback shift register (LFSR) is used as post-processor to improve the statistical characteristics of proposed TRNG. The design of TRNG has been implemented on Altera Cyclone II EP2C20F484C6 FPGA which consumed 892 logic elements (5%), 67.75 mW power to generate 131,072 true random bits. It yields maximum entropy of 0.999987 through entropy analysis. Statistical properties of the proposed TRNG have been evaluated using NIST tests. Restart experiment is also conducted to evidence the true randomness of the proposed TRNG.

Keywords

Cryptography De-synchronization Randomness Entropy and NIST tests 

Notes

Acknowledgements

The authors wish to thank SASTRA University for providing infrastructure through the Research & Modernization Fund (Ref. No: R&M/0026/SEEE–010/2012–13) to carry out the research work.

References

  1. 1.
    Bagini, V., Bucci, M.: A design of reliable true random number generator for cryptographic applications. Cryptogr. Hardw. Embed. Syst., 204–218 (1999)Google Scholar
  2. 2.
    Dichtl, M., Golić, J.D.: High-speed true random number generation with logic gates only. Cryptogr. Hardw. Embed. Syst., 45–62 (2007).  https://doi.org/10.1007/978-3-540-74735-2_4
  3. 3.
    Danger, J.L., Guilley, S., Hoogvorst, P.: High speed true random number generator based on open loop structures in FPGAs. Microelectron. J., 40, 1650–1656 (2009).  https://doi.org/10.1016/j.mejo.2009.02.004
  4. 4.
    Deak, N., Gyorfi, T., Marton, K., Vacariu, L., Cret, O.: Highly efficient true random number generator in FPGA devices using phase-locked loops. In: 20th International Conference on Control Systems and Computer Science (2015), 453–458, (2015)Google Scholar
  5. 5.
    Güneysu, T., Paar, C.: Transforming write collisions in block RAMs into security applications. In: Proceedings of the 2009 International Conference on Field-Programmable Technology, FPT’09. (2009) 128–134.  https://doi.org/10.1109/fpt.2009.5377631
  6. 6.
    Johnson, A.P., Chakraborty, R.S., Mukhopadhyay, D.: An improved DCM-based tunable true random number generator for xilinx FPGA. IEEE Trans. Circuits Syst. II Express Briefs 99 (2016)Google Scholar
  7. 7.
    Park, M., Rodgers, J.C., Lathrop, D.P.: True random number generation using CMOS Boolean chaotic oscillator. Microelectronics J. 46(12), 1364–1370 (2015)Google Scholar
  8. 8.
    Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)Google Scholar
  9. 9.
    Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random number generator. In: 2006 International Conference on Field Programmable Logic and Applications FPL, 139–144 (2006).  https://doi.org/10.1109/fpl.2006.311206
  10. 10.
    Wold, K., Tan, C.H.: Analysis and enhancement of random number generator in FPGA based on oscillator rings. In: Proceedings of International Conference on Reconfigurable Computing and FPGAs, ReConFig, vol. 2009, pp. 385–390 (2008)Google Scholar
  11. 11.
    Marghescu, A., Teseleanu, G., Maimut, D.S., Neacsa, T., Svasta, P.: Adapting a ring oscillator-based true random number generator for Zynq system on chip embedded platform. In: 2014 IEEE 20th International Symposium for Design and Technology in Electronic Packaging, SIITME, 197–202 (2014)Google Scholar
  12. 12.
    Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based true random number generators in cryptographic hardware and embedded systems. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010: 12th International Workshop, Santa Barbara, USA, August 17–20, 2010. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 351–365 (2010)Google Scholar
  13. 13.
    Jessa, M., Matuszewski, L.: The use of delay lines in a ring-oscillator-based combined true random number generator. 2012 International Conference on Signals and Electronic Systems ICSES (2012)Google Scholar
  14. 14.
    Bassham, L.E., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Natl. Inst. Stand. Technol., Gaithersburg, MD, USA, Tech. Rep., no. April, 2010Google Scholar
  15. 15.
    Martin, H., Peris-Lopez, P., Tapiador, J.E., San Millan, E.: A new TRNG based on coherent sampling with self-timed rings. IEEE Trans. Ind. Inf. 12(1), 91–100 (2016)Google Scholar
  16. 16.
    Fischer, V., Bernard, F.: True random number generators in FPGAs. Security trends for FPGAS, 73–100 (2011).  https://doi.org/10.1007/978-94-007-1338-3.2011
  17. 17.
    Fischer, V., Drutarovský, M., Šimka, M., Bochard, N.: High performance true random number generator in Altera Stratix FPLDs. In: Becker, J., Platzner, M., Vernalde, S. (eds.) Field Programmable Logic and Application, 14th International Conference FPL 2004, Leuven, Belgium, Aug 30–Sept 1, 2004. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 555–564 (2004).  https://doi.org/10.1007/978-3-540-30117-2_57
  18. 18.
    Kwok, S.H.M., Lam, E.Y.: FPGA-based high-speed true random number generator for cryptographic applications. In: TENCON 2006—2006 IEEE Region 10 Conference, pp. 1–4 (2006).  https://doi.org/10.1109/tencon.2006.344013
  19. 19.
    Deak, N., Gyorfi, T., Marton, K., Vacariu, L., Cret, O.: Highly efficient true random number generator in FPGA devices using phase-locked loops. In: 2015 20th International Conference on Control Systems and Computer Science, pp. 453–458 (2015)Google Scholar
  20. 20.
    Kohlbrenner, P., Gaj, K.: An embedded true random number generator for FPGAs. In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, ACM, New York, NY, USA, pp. 71–78 (2004).  https://doi.org/10.1145/968280.968292
  21. 21.
    Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based true random number generators. In: Mangard, S., Standaert, F.-X. (eds.) Cryptographic Hardware and Embedded Systems CHES 2010 12th International Workshop. St. Barbar. USA, Aug 17–20, 2010. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 351–365 (2010).  https://doi.org/10.1007/978-3-642-15031-9_24
  22. 22.
    Wieczorek, P.Z.: Dual-metastability FPGA-based true random number generator. Electron. Lett. 49, 744–745 (2013).  https://doi.org/10.1049/el.2012.4126
  23. 23.
    Valtchanov, B., Fischer, V., Aubert, A.: Enhanced TRNG based on the coherent sampling. In: 3rd International Conference on Circuits, Signals, and Systems SCS 2009, 1–6 (2009).  https://doi.org/10.1109/icscs.2009.5412601
  24. 24.
    Güneysu, T., Paar, C..: Transforming write collisions in block RAMs into security applications. In: Proceedings of the 2009 International Conference on Field-Programmable Technology, FPT’09, 128–134 (2009).  https://doi.org/10.1109/fpt.2009.5377631
  25. 25.
    Güneysu, T.: True random number generation in block memories of reconfigurable devices. In: 2010 International Conference on Field-Programmable Technol. FPT’10, 200–207 (2010).  https://doi.org/10.1109/fpt.2010.5681499
  26. 26.
    Hisashi, H., Ichikawa, S.: FPGA implementation of metastability-based true random number generator. IEICE Trans. Inf. E95–D, 426–436 (2012).  https://doi.org/10.1587/transinf.e95.d.426

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sivaraman Rethinam
    • 1
  • Sundararaman Rajagopalan
    • 1
    Email author
  • Sridevi Arumugham
    • 1
  • Siva Janakiraman
    • 1
  • C. Lakshmi
    • 1
  • Amirtharajan Rengarajan
    • 1
  1. 1.Department of ECE, School of EEESASTRA Deemed to be UniversityThanjavurIndia

Personalised recommendations