Advertisement

Development of Transgenic Cotton for Combating Biotic and Abiotic Stresses

  • Sultan Mahmood
  • Babar Hussain
Chapter
  • 35 Downloads

Abstract

Cotton is an important crop as it produces valuable textile fibre and contributes to economy of various textile producing countries. However, cotton production is under great threat due to persistent climate change as more frequent drought spells, soil salinization and heat stress, plant pathogens and insect pests significantly reduce its growth, development, fibre and seed yield. Cotton yield has shown up to 50–60% yield losses due to drought and biotic stresses. However, crop improvement through classical breeding takes almost 7–8 years making classical breeding a tedious, laborious, time-consuming and expensive process. On the other hand, DNA recombinant technology ensures the transfer and integration of target gene into cotton genome within a cropping season, thus shortening the breeding cycle significantly. Therefore, transgenic cotton with improved drought, heat and salinity tolerance and resistance against herbicides, diseases and insects has been developed extensively in relatively shorter time. Transgenic method has also helped in improvement of the traits which are considered difficult or impossible to be improved through classical breeding. Another success of transgenic cotton is its great acceptance to farming community due to economic benefits resulting from biotic and abiotic stress tolerance and reduced costs of insect pest sprays. Furthermore, transgenic cotton is under cultivation in various regions and countries; thus we have reviewed the progress in development for biotic and abiotic stress tolerance in cotton through transgenic method. This information will be a valuable resource for cotton breeders and biotechnologists for planning of their future research.

Keywords

Transgenic cotton GMOs Salinity tolerance Drought tolerance Heat tolerance Herbicide resistance Insect resistance Disease resistance 

References

  1. Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84Google Scholar
  2. Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613Google Scholar
  3. Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415CrossRefGoogle Scholar
  4. Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16Google Scholar
  5. Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610CrossRefGoogle Scholar
  6. Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011a) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6Google Scholar
  7. Ali Q, Elahi M, Hussain B, Hussain N, Fawad K (2011b) Genetic improvement of maize (Zea mays L.) against drought stress: an overview. Agric Sci Res J 1:228–237Google Scholar
  8. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3–4):1664–1669Google Scholar
  9. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192Google Scholar
  10. Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160Google Scholar
  11. Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cercetări Agronomice în Moldova XLVII(4):71–81Google Scholar
  12. Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823CrossRefGoogle Scholar
  13. Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agr Syst 167:213–222CrossRefGoogle Scholar
  14. Amudha J, Balasubramani G, Malathi VG, Monga D, Bansal KC, Kranthi KR (2010) Cotton transgenics with antisense AC1 gene for resistance against cotton leaf curl virus. Electron J Plant Breed 1(4):360–369. Available at: https://core.ac.uk/download/pdf/25864638.pdf. Accessed 22 Jun 2019Google Scholar
  15. Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101:300–307Google Scholar
  16. Awan MF, Abbas MA, Muzaffar A, Ali A, Tabassum B, Rao AQ, Nasir IA, Husnain T (2015) Transformation of insect and herbicide resistance genes in cotton (Gossypium hirsutum L.). J Agric Sci Technol 17:275–285Google Scholar
  17. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plants. PLoS One 10:e0122933PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burke IC, Troxler SC, Askew SD, Wilcut JW, Smith WD (2005) Weed management systems in glyphosate-resistant cotton. Weed Technol 19:422–429CrossRefGoogle Scholar
  20. Chen J, Wan S, Liu H, Fan S, Zhang Y, Wang W, Xia M, Yuan R, Deng F, Shen F (2016) Overexpression of an Apocynumvenetum DEAD-Box Helicase gene (AvDH1) in cotton confers salinity tolerance and increases yield in a saline field. Front Plant Sci 6:1227PubMedPubMedCentralGoogle Scholar
  21. Chen W, Lu G, Cheng H, Liu C, Xiao Y, Xu C, Shen Z, Soberón M, Bravo A, Wu K (2017) Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Res 26:763–774PubMedCrossRefGoogle Scholar
  22. Chen W, Liu C, Lu G, Cheng H, Shen Z, Wu K (2018) Effects of Vip3AcAa+Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae). J Insect Sci 18:13PubMedCentralPubMedGoogle Scholar
  23. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40PubMedCrossRefGoogle Scholar
  24. Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442PubMedPubMedCentralCrossRefGoogle Scholar
  25. Divya K, Jami SK, Kirti PB (2010) Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol 73:293–308PubMedCrossRefGoogle Scholar
  26. El-Esawi M, Alayafi A, El-Esawi MA, Alayafi AA (2019) Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes (Basel) 10:142CrossRefGoogle Scholar
  27. Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1(5):321–336. Available at: https://www2.eez.csic.es/~pozo/cotton1.pdf. Accessed 18 Jun 2019PubMedCrossRefGoogle Scholar
  28. Farooq MA, Shakeel A, Atif RM, Saleem MF (2019) Genotypic variations in salinity tolerance among Bt cotton. Pak J Bot 51:1945CrossRefGoogle Scholar
  29. Ganesan M, Bhanumathi P, Kumari KG, Prabha AL, Song P-S, Jayabalan N, Ganesan M, Bhanumathi P, Kumari KG, Prabha AL et al (2009) Transgenic Indian cotton (Gossypium hirsutum) harboring rice Chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5:63–74CrossRefGoogle Scholar
  30. Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105PubMedCrossRefGoogle Scholar
  31. Han Q, Wang Z, He Y, Xiong Y, Lv S, Li S, Zhang Z, Qiu D, Zeng H (2017) Transgenic cotton plants expressing the HaHR3 gene conferred enhanced resistance to Helicoverpa armigera and improved cotton yield. Int J Mol Sci 18:1874PubMedCentralCrossRefPubMedGoogle Scholar
  32. Hao Y, Lu G, Wang L, Wang C, Guo H, Li Y, Cheng H (2018) Overexpression of AmDUF1517 enhanced tolerance to salinity, drought, and cold stress in transgenic cotton. J Integr Agric 17:2204–2214CrossRefGoogle Scholar
  33. Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296PubMedCrossRefGoogle Scholar
  34. Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39:515–530CrossRefGoogle Scholar
  35. Hussain B, Khan MA, Ali Q, Shaukat S (2012) Double haploid production is the best method for genetic improvement and genetic studies of wheat. IJAVMS 6:216–228Google Scholar
  36. Hussain B, Khan AS, Ali Z (2015) Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turk J Agric For 39:182–192CrossRefGoogle Scholar
  37. Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7:15662PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hussain B, Lucas SJ, Budak H (2018) CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief Funct Genomics 17:319–328PubMedGoogle Scholar
  39. Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgenic Res 6:385–392CrossRefGoogle Scholar
  40. Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197Google Scholar
  41. Khan AI, Khan IA, Sadaqat HA (2008) Heat tolerance is variable in cotton (Gossypium hirsutumn L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak J Bot 40:2053–2058Google Scholar
  42. Latif A, Rao AQ, Khan MAU, Shahid N, Bajwa KS, Ashraf MA, Abbas MA, Azam M, Shahid AA, Nasir IA, Husnain T (2015) Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res Notes 8:453PubMedPubMedCentralCrossRefGoogle Scholar
  43. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9:e86895PubMedPubMedCentralCrossRefGoogle Scholar
  44. Liu J, He Z, Rasheed A, Wen W, Yan J, Zhang P, Wan Y (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248CrossRefGoogle Scholar
  46. Minhas R, Shah SM, Akhtar LH, Awais S, Shah S (2018) Development of a new drought tolerant cotton variety “BH-167” by using pedigree method. J Environ Agric Sci 14:54–62Google Scholar
  47. Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X, Pehlivan N, Esmaeili N, Luo H, Shen G, Jones D, Auld D, Burke J, Payton P, Zhang H (2017) Overexpression of the rice SUMO E3 Ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant Cell Physiol 58:735–746PubMedPubMedCentralCrossRefGoogle Scholar
  48. Niu J, Zhang S, Liu S, Ma H, Chen J, Shen Q, Ge C, Zhang X, Pang C, Zhao X (2018) The compensation effects of physiology and yield in cotton after drought stress. J Plant Physiol 224–225:30–48PubMedCrossRefGoogle Scholar
  49. de Oliveira RS, Oliveira-Neto OB, Moura HFN, de Macedo LLP, Arraes FBM, Lucena WA, Lourenço-Tessutti IT, de Deus Barbosa AA, da Silva MCM, Grossi-de-Sa MF (2016) Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall Armyworm (Spodoptera frugiperda) and cotton boll weevil (Anthonomus grandis). Front Plant Sci 7:165PubMedPubMedCentralGoogle Scholar
  50. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Nat Biotechnol 8:939–943CrossRefGoogle Scholar
  51. Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113CrossRefGoogle Scholar
  52. Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554PubMedCrossRefGoogle Scholar
  53. Sanjaya, Satyavathi VV, Prasad V, Kirthi N, Maiya SP, Savithri HS, Sita GL (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 81:55–63CrossRefGoogle Scholar
  54. Sattar MN, Kvarnheden A, Saeed M, Briddon RW (2013) Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 94:695–710PubMedCrossRefGoogle Scholar
  55. Shabbir MZ, Arshad M, Hussain B, Nadeem I, Ali S, Abbasi A, Ali Q (2014) Genotypic response of chickpea (Cicer arietinum L.) for resistance against gram pod borer (Helicoverpa Armigera). Adv Life Sci 2:23–30Google Scholar
  56. Sohrab SS, Kamal MA, Ilah A, Husen A, Bhattacharya PS, Rana D (2016) Development of Cotton leaf curl virus resistant transgenic cotton using antisense βC1 gene. Saudi J Biol Sci 23:358–362PubMedCrossRefGoogle Scholar
  57. Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262Google Scholar
  58. Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43CrossRefGoogle Scholar
  59. Tohidfa M, Rassouli H, Ghareyazie B, Najafi J (2009) Evaluation of stability of Chitinase gene in transgenic offspring of cotton (Gossypium hirsutum). Iran J Biotechnol 7(1):45–50. National Institute of Genetic Engineering and Biotechnology. Available at: http://www.ijbiotech.com/article_7073_0.html. Accessed 21 Jun 2019Google Scholar
  60. Tohidfar M, Hossaini R, Bashir NS, Meisam T (2012) Enhanced resistance to Verticillium dahliae in transgenic cotton expressing an Endochitinase gene from Phaseolus vulgaris. Czech J Genet Plant Breed 48:33–41CrossRefGoogle Scholar
  61. Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284PubMedPubMedCentralCrossRefGoogle Scholar
  62. Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3–4):386–391Google Scholar
  63. Wan P, Xu D, Cong S, Jiang Y, Huang Y, Wang J, Wu H, Wang L, Wu K, Carrière Y, Mathias A, Tabashnik BE (2017) Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm. Proc Natl Acad Sci 114:5413–5418PubMedCrossRefPubMedCentralGoogle Scholar
  64. Wang J, Chen Y, Yao M, Li Y, Wen Y, Chen Y, Zhang X, Chen D (2015) The effects of high temperature level on square Bt protein concentration of Bt cotton. J Integr Agric 14:1971–1979CrossRefGoogle Scholar
  65. Wang Y, Liang C, Wu S, Zhang X, Tang J, Jian G, Jiao G, Li F, Chu C (2016) Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Mol Plant 9:1436–1439PubMedCrossRefPubMedCentralGoogle Scholar
  66. Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energ Environ Sci 4:2669CrossRefGoogle Scholar
  67. Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A∗ accumulating in chloroplasts. Transgenic Res 20:963–973PubMedCrossRefGoogle Scholar
  68. Xu Y, Ramanathan V, Victor DG (2018) Global warming will happen faster than we think. Nature 564:30–32PubMedCrossRefGoogle Scholar
  69. Yang H, Zhang D, Li X, Li H, Zhang D, Lan H, Wood AJ, Wang J (2016) Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol Breed 36:34CrossRefGoogle Scholar
  70. Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84PubMedCrossRefGoogle Scholar
  71. Yue Z, Liu X, Zhou Z, Hou G, Hua J, Zhao Z (2016) Development of a novel-type transgenic cotton plant for control of cotton bollworm. Plant Biotechnol J 14:1747–1755PubMedPubMedCentralCrossRefGoogle Scholar
  72. Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298CrossRefGoogle Scholar
  73. Zhang X, Tang Q, Wang X, Wang Z (2017) Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene. J Integr Agric 16:551–558CrossRefGoogle Scholar
  74. Zhu X, Sun L, Kuppu S, Hu R, Mishra N, Smith J, Esmaeili N, Herath M, Gore MA, Payton P, Shen G, Zhang H (2018) The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied. Sci Rep 8:2538PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sultan Mahmood
    • 1
  • Babar Hussain
    • 2
    • 3
  1. 1.Department of Plant Breeding and GeneticsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  3. 3.Faculty of Life SciencesUniversity of Central PunjabLahorePakistan

Personalised recommendations