Advertisement

Applications of Crop Modeling in Cotton Production

  • Ghulam Abbas
  • Zartash Fatima
  • Muhammad Tariq
  • Mukhtar Ahmed
  • Muhammad Habib ur Rahman
  • Wajid Nasim
  • Ghulam Rasul
  • Shakeel AhmadEmail author
Chapter
  • 34 Downloads

Abstract

Cotton growth models are being generally used by cotton scientists as well as policy makers across globe as an important and effective research tool. Cotton simulation models have been applied during last and current decades for the analysis of the cotton plant responses to drought, heat, and nutrients stress as well as to test the alternating optimum sowing window under climate warming trend in cotton belt. Cotton growth models are useful research tools in worldwide. Mostly cotton models were applied for climatic changes, cotton management practices, and irrigation strategies on lint and cottonseed yield in worldwide. All cotton models were successfully used at local, regional, and national levels in worldwide, but among all cotton growth models, CROPGRO-Cotton model was mostly used by researchers and policy makers. For irrigation management strategies, mostly AquaCrop model was used by researchers.

Keywords

Model Climate change Irrigation Management CROPGRO Phenology 

Abbreviations

CRM

Coefficient residual mass

DSSAT

Decision support system for agro-technology transfer

GCM

General circulation model

LAI

Leaf area index

LFMAX

Maximum leaf area

NRMSE

Normalized root mean square error

RCP

Representative concentration pathway

RMSE

Root mean square error

RUE

Radiation use efficiency

SCY

Seed cotton yield

TDM

Total dry matter

WUE

Water use efficiency

Notes

Acknowledgments

The author acknowledged the funding by the Higher Education Commission (HEC), Islamabad (HEC-NRPU-4511), and Bahauddin Zakariya University, Multan.

References

  1. Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84Google Scholar
  2. Adhikari P, Ale S, Bordovsky JP, Thorp KR, Modala NR, Rajan N, Barnes EM (2016) Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric Water Manag 164:317–330CrossRefGoogle Scholar
  3. Adhikari P, Gowda PH, Marek GW, Brauer DK, Kisekka I, Northup B, Rocateli A (2017) Calibration and validation of CSM-CROPGRO-Cotton model using lysimeter data in the Texas High Plains. J Contemp Water Res Educ 162(1):61–78CrossRefGoogle Scholar
  4. Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613Google Scholar
  5. Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415Google Scholar
  6. Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16Google Scholar
  7. Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610Google Scholar
  8. Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6Google Scholar
  9. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669Google Scholar
  10. Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192Google Scholar
  11. Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160Google Scholar
  12. Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81Google Scholar
  13. Ali M, Deo RC, Downs NJ, Maraseni T (2018) Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programing algorithm: a new hybrid copula-driven approach. Agric For Meteorol 263:428–448CrossRefGoogle Scholar
  14. Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823Google Scholar
  15. Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222CrossRefGoogle Scholar
  16. Amouzou KA, Naab JB, Lamers JP, Borgemeister C, Becker M, Vlek PL (2018) CROPGRO-Cotton model for determining climate change impacts on yield, water-and N-use efficiencies of cotton in the Dry Savanna of West Africa. Agric Syst 165:85–96CrossRefGoogle Scholar
  17. Arshad MN, Ahmad A, Wajid SA, Cheema MJM, Schwartz MW (2017) Adapting DSSAT model for simulation of cotton yield for nitrogen levels and planting dates. Agron J 109(6):2639–2648CrossRefGoogle Scholar
  18. Attia A, Rajan N, Nair SS, DeLaune PB, Xue Q, Ibrahim AMH, Hays DB (2016) Modeling cotton lint yield and water use efficiency responses to irrigation scheduling using Cotton2K. Agron J 108(4):1614CrossRefGoogle Scholar
  19. Baker DN, Lambert JR, McKinion JM (1983) GOSSYM: a simulator of cotton crop growth and yield. South Carolina Agric Stn Bull 1089:134Google Scholar
  20. Brown LG, Jones JW, Hesketh JD, Hartsog JD, Whisler FD, Harris FS (1985) COTCROP: computer simulation of growth and yield. Information Bulletin 69. Mississippi Agricultural and Forestry Experiment Station, Mississippi State, MSGoogle Scholar
  21. Duncan WG (1972) SIMCOT: a simulator of cotton growth and yield. In: Proc. workshop on tree growth dynamics and modeling. Duke university, Oct 11–12, 1971, pp 115–118Google Scholar
  22. Duncan WG, Loomis RS, Williams WA, Hanau R (1967) A model for simulating photosynthesis in plant communities. Hilgardia J Agric Sci 38:181–205CrossRefGoogle Scholar
  23. Dzotsi KA, Basso B, Jones JW (2015) Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model. Agric Syst 135:31–47CrossRefGoogle Scholar
  24. Farahani HJ, Izzi G, Oweis TY (2009) Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron J 101(3):469–476CrossRefGoogle Scholar
  25. Guerra LC, Garcia AG, Hoogenboom G, Bednarz CW, Jones JW (2005) Evaluation of a new model to simulate growth and development of cotton. In: ASA, CSSA, and SSSA annual meetings, Salt Lake City, UT, pp 6–10Google Scholar
  26. Han M, Zhao C, Simunek J, Feng G (2015) Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model. Agric Water Manag 160:64–75CrossRefGoogle Scholar
  27. Hearn AB (1994) OZCOT: a simulation model for cotton crop management. Agric Syst 44:257–259CrossRefGoogle Scholar
  28. Hearn AB, da Roza GD (1985) A simple model for crop management applications for cotton 2 (Gossypium hirsutum L). Field Crop Res 12:49–69CrossRefGoogle Scholar
  29. Hebbar KB, Venugopalan MV, Seshasai MVR, Rao KV, Patil BC, Prakash AH, Kumar V, Hebbar KR, Jeyakumar P, Bandhopadhyay KK, Rao MRK (2008) Predicting cotton production using Infocrop-cotton simulation model, remote sensing and spatial agro-climatic data. Curr Sci 95(11):1570–1579Google Scholar
  30. Heidariniya M, Naseri AA, Boroumandnasab S, Moshkabadi BS, Nasrolahi AH (2012) Evalution of AquaCrop model application in irrigation management of cotton. World Rural Obs 4:55–59Google Scholar
  31. Hodges HF, Whisler FD, Bridges SM, Reddy KR, McKinnion JM (1998) Simulation in crop management-GOSSYM/COMAX. In: Peart RM, Curry RB (eds) Agricultural systems modeling and simulation. Marcel Dekker, Inc., New YorkGoogle Scholar
  32. Hussein F, Janat M, Yakoub A (2011) Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Span J Agric Res 9(4):1319–1330CrossRefGoogle Scholar
  33. Ibrahim B, Yacoub A (2009) Using CROPWAT model in scheduling irrigation and determining water use of cotton in two areas in Syria. Arab Gulf J Sci Res 27(1):70–77Google Scholar
  34. Iqbal J, Whisler FD (2000) Spatial variability of soil physical properties and validation of Gossym on selected growth parameters of a cotton crop. In: 2000 proceedings Beltwide cotton conferences, San Antonio, USA, 4–8 January, 2000, vol 2. National Cotton Council, pp 1430–1431Google Scholar
  35. Jallas E, Martin P, Sequeira R, Turner S, Cretenet MGE (2000) Virtual COTONS1, the firstborn of the next generation of simulation model. Virtual Worlds 1834:235–244CrossRefGoogle Scholar
  36. Kamali SD, Jeloudar NB, Alishah O (2011) The assessment of adaptability and stability of yield on cotton cultivars by using uniparametric, non-parametric methods and AMMI model. Iran J Field Crop Sci 42(2):397–407Google Scholar
  37. Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197Google Scholar
  38. Ko J, Piccinni G, Steglich E (2009) Using EPIC model to manage irrigated cotton and maize. Agric Water Manag 96(9):1323–1331CrossRefGoogle Scholar
  39. Koukouli P, Georgiou P (2018) Evaluation of climate change impacts on cotton yield using Cropsyst and regression models. J Adv Agric 8(1):1433–1451Google Scholar
  40. Kumar S, Niwas R, Khichar ML, Kumar Y, Premdeep AS (2017) Sensitivity analysis of DSSAT CROPGRO-Cotton model for cotton under different growing environments. Indian J Ecol 44(4):237–241Google Scholar
  41. Ladewig H, Thomas JK (1992) A follow-up evaluation of the GOSSYM/COMAX cotton program. Texas Agric Ext Serv 14:1–47Google Scholar
  42. Lambert JR, Baker DN (1984) RHIZOS, a simulator of root growth and soil processes: model descriptions. South Carolina Agric Expt Tech Bull 1080Google Scholar
  43. Landivar JA, Reddy KR, Hodges HF (2010) Physiological simulation of cotton growth and yield. In: Physiology of cotton. Springer, Dordrecht, pp 318–331CrossRefGoogle Scholar
  44. Lemmon H (1986) COMAX: an expert system for cotton crop management. Science 233:29–33PubMedCrossRefPubMedCentralGoogle Scholar
  45. Li W, Zhou Z, Meng Y, Xu N, Fok M (2009) Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crop Res 112(2–3):131–140CrossRefGoogle Scholar
  46. Li F, Yu D, Zhao Y (2019a) Irrigation scheduling optimization for cotton based on the AquaCrop model. Water Resour Manag 33(1):39–55CrossRefGoogle Scholar
  47. Li M, Du Y, Zhang F, Bai Y, Fan J, Zhang J, Chen S (2019b) Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model. Agric Water Manag 218:124–138CrossRefGoogle Scholar
  48. Liang XZ, Xu M, Gao W, Reddy KR, Kunkel K, Schmoldt DL, Samel AN (2012) A distributed cotton growth model developed from GOSSYM and its parameter determination. Agron J 104(3):661–674CrossRefGoogle Scholar
  49. Lifeng W, Zhang F, Fan J, Zhou H, Xing Y, Qiang S (2015) Sensitivity and uncertainty analysis for CROPGRO-cotton model at different irrigation levels. Transactions of the Chinese society of. Agric Eng 31(15):55–64Google Scholar
  50. Linker R, Ioslovich I, Sylaios G, Plauborg F, Battilani A (2016) Optimal model-based deficit irrigation scheduling using AquaCrop: a simulation study with cotton, potato and tomato. Agric Water Manag 163:236–243CrossRefGoogle Scholar
  51. Liting H, Xuebiao P, Xuejiao W, Qi H (2018) Dynamic prediction of cotton regional yield based on the COSIM model-a case study of Akesu City, Xinjiang. Cotton Sci 1:10–19CrossRefGoogle Scholar
  52. Loison R, Audebert A, Debaeke P, Gérardeaux E (2016) Design of African rainfed cotton ideotypes using DSSAT CROPGRO-Cotton. In: International Crop Modelling Symposium, 15–17 Mar 2016, BerlinGoogle Scholar
  53. Marani A, Cardon GE, Phene CJ (1992a) CALGOS, a version of GOSSYM adapted for irrigated cotton. I. Drip irrigation, soil water transport, and root growth. In: Herber DJ, Richter DA (eds) Proc Beltwide cotton Conf. National Cotton Council of America, Memphis, TN, pp 1352–1357Google Scholar
  54. Marani A, Phene CJ, Cardon GE (1992b) CALGOS, a version of GOSSYM adapted for irrigated cotton. III. Leaf an boll growth routines. In: Herber DJ, Richter DA (eds) Proc. Beltwide cotton Conf. National Cotton Council of America, Memphis, TN, pp 1361–1364Google Scholar
  55. McCarthy AC, Hancock NH, Raine SR (2014) Simulation of irrigation control strategies for cotton using model predictive control within the VARIwise simulation framework. Comput Electron Agric 101:135–147CrossRefGoogle Scholar
  56. McKinion JM, Baker DN, Hesketh JD, Jones JW (1975) SIMCOT II: a simulation of cotton growth and yield. ARS-S-52, USDA, pp 27–82Google Scholar
  57. Milroy SP, Bange MP, Hearn AB (2004) Row configuration in rainfed cotton systems: modification of the OZCOT simulation model. Agric Syst 82(1):1–16CrossRefGoogle Scholar
  58. Modala NR, Ale S, Rajan N, Munster CL, DeLaune PB, Thorp KR, Nair SS, Barnes EM (2015) Evaluation of the CSM-CROPGRO-Cotton model for the Texas rolling plains region and simulation of deficit irrigation strategies for increasing water use efficiency. Trans ASABE 58(3):685–696Google Scholar
  59. Mutsaers HJW (1984) KUTUN: a morphogenetic model for cotton (Gossypium hirsutum L.). Agric Syst 14:229–257CrossRefGoogle Scholar
  60. Nagender T, Reddy DR, Sreenivas G, Rani PL, Surekha K, Gupta A, Sreekanth PD (2017) Evaluation of CSM-CROPGRO-Cotton model under varied plant densities and nitrogen levels for simulating crop growth, development and seed cotton yield. Int J Pure Appl Biosci 5(4):1738–1754CrossRefGoogle Scholar
  61. Pan X, Han X, Shi Y (1996) A cotton growth and development simulation model for culture management-COTGROW. Sci Agric Sin 29:94–96. (In Chinese, with English abstract)Google Scholar
  62. Pathak TB, Fraisse CW, Jones JW, Messina CD, Hoogenboom G (2007) Use of global sensitivity analysis for CROPGRO cotton model development. Trans ASABE 50(6):2295–2302CrossRefGoogle Scholar
  63. Poyyamozhi S, Mohideen AK (2016) Forecasting of cotton production in India using ARIMA model. Asia Pac J Oper Res 1:70–74Google Scholar
  64. Pretorius MM, Allemann J, Smith MF (2015) Use of the AMMI model to analyse cultivar-environment interaction in cotton under irrigation in South Africa. Afr J Agric Res 2:76–80Google Scholar
  65. Qian L, Wang XG, Luo WB, Qi ZM, Sun HW, Luo YY (2017) An improved CROPR model for estimating cotton yield under soil aeration stress. Crop Pasture Sci 68(4):366–377CrossRefGoogle Scholar
  66. Rahman MH, Ahmad A, Wajid A, Hussain M, Rasul F, Ishaque W, Islam MA, Shelia V, Awais M, Ullah A, Wahid A (2017) Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res.  https://doi.org/10.1016/j.fcr.2017.007
  67. Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113CrossRefGoogle Scholar
  68. Reddy KR, Kakani VG, McKinion JM, Baker DN (2016) Applications of a cotton simulation model, GOSSYM, for crop management, economic, and policy decisions. In: Agricultural system models in field research and technology transfer. CRC Press, Boca Raton, FL, pp 44–65Google Scholar
  69. Richardson AG, Reddy KR, Boone ML (2002) Sensitivity analysis of climate change impacts on cotton production using the GOSSYM crop model. Int J Biotron 31:25–49Google Scholar
  70. Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8(5):1204–1213CrossRefGoogle Scholar
  71. Sadanshiv NS, Chatterji S, Sen TK, Venugopalan MV, Tiwary P, Wagh NS, Arun C (2012) Application of a crop simulation model for quantification of yield gap of cotton in Wardha district, Maharashtra. Agropedology 22(2):74–79Google Scholar
  72. Shuli F, Jarwar AH, Wang X, Wang L, Ma Q (2018) Overview of the cotton in Pakistan and its future prospects. Pak J Agric Res 31(4):396–407Google Scholar
  73. Sommer R, Kienzler K, Conrad C, Ibragimov N, Lamers J, Martius C, Vlek P (2008) Evaluation of the CropSyst model for simulating the potential yield of cotton. Agron Sustain Dev 28(2):345–354CrossRefGoogle Scholar
  74. Tak V (2014) Heat unit requirement and validation of infocrop model for Bt-cotton in middle Gujarat agroclimatic region. Doctoral dissertation, AAU, AnandGoogle Scholar
  75. Tan S, Wang Q, Zhang J, Chen Y, Shan Y, Xu D (2018) Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agric Water Manag 196:99–113CrossRefGoogle Scholar
  76. Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262Google Scholar
  77. Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43CrossRefGoogle Scholar
  78. Thorp KR, Barnes EM, Hunsaker DJ, Kimball BA, White JW, Nazareth VJ, Hoogenboom G (2014) Evaluation of CSM-CROPGRO-Cotton for simulating effects of management and climate change on cotton growth and evapotranspiration in an arid environment. Trans ASABE 57(6):1627–1642Google Scholar
  79. Thorp KR, Hunsaker DJ, Bronson KF, Andrade-Sanchez P, Barnes EM (2017) Cotton irrigation scheduling using a crop growth model and FAO-56 methods: field and simulation studies. Trans ASABE 60(6):2023–2039CrossRefGoogle Scholar
  80. Tsakmakis ID, Kokkos NP, Gikas GD, Pisinaras V, Hatzigiannakis E, Arampatzis G, Sylaios GK (2019) Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agric Water Manag 213:419–432CrossRefGoogle Scholar
  81. Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391Google Scholar
  82. Venugopalan MV, Tiwary P, Ray SK, Chatterji K, Bhattacharyya T, Bandhopadhyay KK, Sarkar D, Chandran P, Pal DK, Mandal DK (2014) InfoCrop-cotton simulation model–its application in land quality assessment for cotton cultivation. Curr Sci 107(9):1512–1518Google Scholar
  83. Voloudakis D, Karamanos A, Economou G, Kalivas D, Vahamidis P, Kotoulas V, Kapsomenakis J, Zerefos C (2015) Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis. Agric Water Manag 147:116–128CrossRefGoogle Scholar
  84. Wajid A, Ahmad A, Hussain M, ur Rahman MH, Khaliq T, Mubeen M, Rasul F, Bashir U, Awais M, Iqbal J, Sultana SR (2014) Modeling growth, development and seed-cotton yield for varying nitrogen increments and planting dates using DSSAT. Pak J Agric Sci 51:641–650Google Scholar
  85. Wall GW, Amthor JS, Kimball BA (1994) COTCO2: a cotton growth simulation model for global change. Agric For Meteorol 70:289–342CrossRefGoogle Scholar
  86. Wang B, Liu H, Wang XH, Li JM, Ma YB, Ma XW (2015) Soil phosphorus accumulation model for an arid area of North-Western China with 3-year rotation of wheat, maize and cotton. J Agric Sci 153(7):1247–1256CrossRefGoogle Scholar
  87. Wang J, Li J, Guan H (2017a) Evaluation of drip irrigation system uniformity on cotton yield in an arid region using a two-dimensional soil water transport and crop growth coupling model. Irrig Drain 66(3):351–364CrossRefGoogle Scholar
  88. Wang X, Pan X, Wang S, Hu L, Guo Y, Li X (2017b) Dynamic prediction method for cotton yield based on COSIM model in Xinjiang. Trans Chin Soc Agric Eng 33(8):160–165Google Scholar
  89. Yang Y, Ouyang Z, Yang Y, Liu X (2008) Simulation of the effect of pruning and topping on cotton growth using COTTON2K model. Field Crop Res 106(2):126–137CrossRefGoogle Scholar
  90. Yu Y, Zhao C (2015) Modelling soil and root respiration in a cotton field using the DNDC model. J Plant Nutr Soil Sci 178(5):787–791CrossRefGoogle Scholar
  91. Zamora DS, Jose S, Jones JW, Cropper WP (2009) Modeling cotton production response to shading in a pecan alleycropping system using CROPGRO. Agrofor Syst 76(2):423–435CrossRefGoogle Scholar
  92. Zhang JP, Tugwell NP, Cochran MJ, Bourland FM, Oosterhuis DM, Klein CD (1994) COTMAN: a computer-aided cotton management system for late-season practices. In: Herber DJ, Richter DA (eds) Proc. Beltwide cotton Conf. National Cotton Council of America, Memphis, TN, pp 1286–1287Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ghulam Abbas
    • 1
  • Zartash Fatima
    • 1
  • Muhammad Tariq
    • 2
  • Mukhtar Ahmed
    • 3
  • Muhammad Habib ur Rahman
    • 4
  • Wajid Nasim
    • 5
  • Ghulam Rasul
    • 6
    • 7
  • Shakeel Ahmad
    • 1
    Email author
  1. 1.Department of AgronomyBahauddin Zakariya UniversityMultanPakistan
  2. 2.Central Cotton Research InstituteMultanPakistan
  3. 3.Department of AgronomyPMAS Arid Agriculture UniversityRawalpindiPakistan
  4. 4.Department of AgronomyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
  5. 5.Department of Agronomy, University College of Agriculture and Environmental SciencesIslamia University of BahawalpurBahawalpurPakistan
  6. 6.International Center for Integrated Mountain DevelopmentKathmanduNepal
  7. 7.Pakistan Meteorological DepartmentIslamabadPakistan

Personalised recommendations