Advertisement

Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack

  • Sylvain MezilEmail author
  • Nikolay Chigarev
  • Vincent Tournat
  • Vitalyi Gusev
Chapter
Part of the Springer Series in Measurement Science and Technology book series (SSMST)

Abstract

A one and two dimensional imaging of a crack by a novel nonlinear frequency-mixing photoacoustic method is presented. Acoustic waves are initiated by a pair of laser beams intensity-modulated at two different frequencies. The first laser beam, intensity modulated at a low frequency \(f_L\), generates a thermoelastic wave which modulates the local crack rigidity up to complete closing/opening of the crack, corresponding to crack breathing. The second laser beam, intensity modulated at much higher frequency \(f_H\), generates an acoustic wave incident on the breathing crack. The detection of acoustic waves at mixed frequencies \(f_H\pm nf_L\) (\(n=1,2,\dots \)), absent in the excitation frequency spectrum, provides detection of the crack, which can be achieved all-optically. The theory attributes the generation of the frequency-mixed spectral components to the modulation of the acoustic waves reflected/transmitted by the time-varying nonlinear rigidity of the crack. The crack rigidity is modified due to stationary and oscillating components from the laser-induced thermoelastic stresses. The amplitudes of the spectral sidelobes are non-monotonous functions of the increasing thermoelastic loading. Fitting such experimental evolutions with theoretical ones leads to estimating various local parameters of the crack, including its width and rigidity.

References

  1. 1.
    C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques & Applications (Adam Hilger, New York, 1990)Google Scholar
  2. 2.
    V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (American Institute of Physics, Maryland, 1993)Google Scholar
  3. 3.
    D. Royer, E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications (Springer, Berlin, 2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    W. Bai, G.J. Diebold, Moving photoacoustic sources: Acoustic waveforms in one, two, and three dimensions and application to trace gas detection. J. Appl. Phys. 125(6), 060902 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    K.-H. Lin, G.-W. Chern, C.-T. Yu, T.-M. Liu, C.-C. Pan, G.-T. Chen, J.-I. Chyi, S.-W. Huang, P.-C. Li, C.-K. Sun, Optical piezoelectric transducer for nano-ultrasonics. IEEE Trans. UFFC 52(8), 1404–1414 (2005)CrossRefGoogle Scholar
  6. 6.
    P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A.A. Maznev, K.-K. Sheu, C.-K. Sun, THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures. Ultrasonics 56, 52–65 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Huynh, B. Perrin, A. Lemaître, Semiconductor superlattices: A tool for terahertz acoustics. Ultrasonics 56, 66–79 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Mechri, P. Ruello, J.M. Breteau, M.R. Baklanov, P. Verdonck, V. Gusev, Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry. Appl. Phys. Lett. 95(9), 091907 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Steigerwald, Y. Xu, J. Qi, J. Gregory, X. Liu, J.K. Furdyna, K. Varga, A.B. Hmelo, G. Lüpke, L.C. Feldman, N. Tolk, Semiconductor point defect concentration profiles measured using coherent acoustic phonon waves. Appl. Phys. Lett. 94(11), 111910 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Lomonosov, A. Ayouch, P. Ruello, G. Vaudel, M.R. Baklanov, P. Verdonck, L. Zhao, V.E. Gusev, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film. ACS Nano 6(2), 1410–1415 (2012). PMID: 22211667CrossRefGoogle Scholar
  11. 11.
    V.E. Gusev, P. Ruello, Advances in applications of time-domain brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 5(3), 031101 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A. Vertikov, M. Kuball, A.V. Nurmikko, H.J. Maris, Time resolved pump-probe experiments with subwavelength lateral resolution. Appl. Phys. Lett. 69(17), 2465–2467 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Atkin, S. Berweger, A.C. Jones, M.B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61(6), 745–842 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Maris, Picosecond ultrasonics. Sci. Am. 278(1), 86–89 (1998)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, C.-K. Sun.: Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. Nat. Nanotechnol. 2, 704 EP –, 10 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    P.-A. Mante, C.-C. Chen, Y.-C. Wen, H.-Y. Chen, S.-C. Yang, Y.-R. Huang, I.-J. Chen, Y.-W. Chen, V. Gusev, M.-J. Chen, J.-L. Kuo, J.-K. Sheu, and C.-K. Sun. Probing hydrophilic interface of solid/liquid-water by nanoultrasonics. Sci. Rep. 4, 6249 EP –, 09 (2014)Google Scholar
  17. 17.
    J.D.G. Greener, A.V. Akimov, V.E. Gusev, Z.R. Kudrynskyi, P.H. Beton, Z.D. Kovalyuk, T. Taniguchi, K. Watanabe, A.J. Kent, A. Patanè, Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018)Google Scholar
  18. 18.
    C. Li, V. Gusev, E. Dimakis, T. Dekorsy, M. Hettich.: Broadband photo-excited coherent acoustic frequency combs and mini-brillouin-zone modes in a MQW-SESAM structure. Appl. Sci. 9(2), (2019)CrossRefGoogle Scholar
  19. 19.
    S.A. Akhmanov, V.E. Gusev, Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics. Sov. Phys. Usp. 35(3), 153–191 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    P. Ruello, V.E. Gusev, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    H.T. Grahn, H.J. Maris, J. Tauc, Picosecond ultrasonics. IEEE J. Quantum Electron. 25(12), 2562–2569 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    L.K. Zarembo, V.A. Krasil’nkov, Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Usp. 13(6), 778–797 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York, 1977)zbMATHCrossRefGoogle Scholar
  25. 25.
    V.E. Nazarov, L.A. Ostrovsky, I.A. Soustova, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Int. 50, 65–73 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    Robert A. Guyer, Paul A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999)CrossRefGoogle Scholar
  27. 27.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)zbMATHGoogle Scholar
  28. 28.
    V. Gusev, V. Tournat, B. Castagnède, Nonlinear acoustic phenomena in micro-inhomogeneous materials, in Materials and Acoustics Handbook, ed. by M. Bruneau, C. Potel (Wiley, London, New York, 2009), pp. 433–472Google Scholar
  29. 29.
    V. Tournat, V. Gusev, B. Castagnède, Non-destructive evaluation of micro-inhomogeneous solids by nonlinear acoustic methods, in Materials and Acoustics Handbook, ed. by M. Bruneau, C. Potel (Wiley, London, New York, 2009), pp. 473–504Google Scholar
  30. 30.
    P.P. Delsanto (ed.), Universality of Nonclassical Nonlinearity (Springer, New York, 2006)Google Scholar
  31. 31.
    K.E.A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000)Google Scholar
  32. 32.
    V.Y. Zaitsev, L.A. Matveev, A.L. Matveyev, Elastic-wave modulation approach to crack detection: Comparison of conventional modulation and higher-order interactions. NDT & E Int. 44(1), 21–31 (2011)CrossRefGoogle Scholar
  33. 33.
    O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    A. Novak, M. Bentahar, V. Tournat, R. El Guerjouma, L. Simon, Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis. NDT & E Int. 45, 1–8 (2012)CrossRefGoogle Scholar
  35. 35.
    A. Moussatov, V. Gusev, B. Castagnède, Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys. Rev. Lett. 90(12), 124301 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    B.A. Korshak, I.Y. Solodov, E.M. Ballad, DC effects, sub-harmonics, stochasticity and "memory" for contact acoustic non-linearity. Ultrasonics 40(1–8), 707–713 (2002)CrossRefGoogle Scholar
  37. 37.
    A. Moussatov, B. Castagnède, V. Gusev, Observation of non linear interaction of acoustic waves in granular materials: demodulation process. Phys. Lett. A 283, 216–223 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    L. Fillinger, V. Zaitsev, V. Gusev, B. Castagnède, Wave self-modulation in an acoustic resonator due to self-induced transparency. Europhys. Lett. 76, 229–235 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    L. Fillinger, V.Y. Zaitsev, V.E. Gusev, B. Castagnède, Self-modulation of acoustic waves in resonant bars. J. Sound Vibr. 318, 527–548 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    V. Zaitsev, V. Gusev, B. Castagnède, Luxemburg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 89(10), 105502 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    V.Y. Zaitsev, V. Nazarov, V. Gusev, B. Castagnède, Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 39, 184–194 (2006)CrossRefGoogle Scholar
  42. 42.
    P.B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5), 375–381 (1998)CrossRefGoogle Scholar
  43. 43.
    A.M. Sutin, Nonlinear acoustic nondestructive testing of cracks. J. Acoust. Soc. Am. 99(4), 2539–2574 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 77(12), 927–967 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)CrossRefGoogle Scholar
  46. 46.
    M.W. Sigrist, Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60(7), R83–R122 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    S.A. Akhmanov, V.E. Gusev, A.A. Karabutov, Pulsed laser optoacoustics: Achievements and perspective. Infrared Phys. 29(2–4), 815–838 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    A.A. Karabutov, V.T. Platonenko, O.V. Rudenko, B.A. Chupryna, Experimental investigation of shock-front formation in solid (in russian). Mosc. Univ. Phys. Bull. 25(3), 89–91 (1984)Google Scholar
  49. 49.
    Y. Yasumoto, A. Nakamura, R. Takeuchi, Developments in the use of acoustic shock pulses in the study of elastic properties of solids. Acta Acust. United Acust. 30(5), 260–267 (1974)Google Scholar
  50. 50.
    V.N. In’kov, E.B. Cherepetskaya, V.L. Shkuratnik, A.A. Karabutov, V.A. Makarov, Ultrasonic laser spectroscopy of mechanic-acoustic nonlinearity of cracked rocks. J. Appl. Mech. Tech. Phys. 46, 452–457 (2005)ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    M. Li, A.M. Lomonosov, Z. Shen, H. Seo, K.-Y. Jhang, V.E. Gusev, C. Ni, Monitoring of thermal aging of aluminum alloy via nonlinear propagation of acoustic pulses generated and detected by lasers. Appl. Sci. 9(6), (2019)CrossRefGoogle Scholar
  52. 52.
    O.L. Muskens, J.I. Dijkhuis, High amplitude, ultrashort, longitudinal strain solitons in sapphire. Phys. Rev. Lett. 89(28), 285504 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    A. Bojahr, M. Herzog, D. Schick, I. Vrejoiu, M. Bargheer, Calibrated real-time detection of nonlinearly propagating strain waves. Phys. Rev. B 86, 144306 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    C. Klieber, V.E. Gusev, T. Pezeril, K.A. Nelson, Nonlinear acoustics at ghz frequencies in a viscoelastic fragile glass former. Phys. Rev. Lett. 114, 065701 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    H.-Y. Hao, H.J. Maris, Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64, 064302 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    P.J.S. van Capel, E. Péronne, J.I. Dijkhuis, Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 56, 36–51 (2015)CrossRefGoogle Scholar
  57. 57.
    A.A. Kolomenskii, A.M. Lomonosov, R. Kuschnereit, P. Hess, V.E. Gusev, Laser generation and detection of strongly nonlinear elastic surface pulses. Phys. Rev. Lett. 79, 1325–1328 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    A. Lomonosov, P. Hess, Effects of nonlinear elastic surface pulses in anisotropic silicon crystals. Phys. Rev. Lett. 83, 3876–3879 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    A. Lomonosov, V.G. Mikhalevich, P. Hess, EYu. Knight, M.F. Hamilton, E.A. Zabolotskaya, Laser-generated nonlinear rayleigh waves with shocks. J. Acoust. Soc. Am. 105(4), 2093–2096 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    A.M. Lomonosov, P. Hess, A.P. Mayer, Observation of solitary elastic surface pulses. Phys. Rev. Lett. 88, 076104 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    P. Hess, Surface acoustic waves in materials science. Phys. Today 55(3), 42–47 (2002)CrossRefGoogle Scholar
  62. 62.
    P. Hess, A.M. Lomonosov, A.P. Mayer, Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Choi, H. Seo, K.-Y. Jhang, Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Res. Nondestr. Eval. 26, 13–22 (2015)CrossRefGoogle Scholar
  64. 64.
    H. Seo, J. Jun, K.-Y. Jhang, Assessment of thermal aging of aluminum alloy by acoustic nonlinearity measurement of surface acoustic waves. Res. Nondestruct. Eval. 28(1), 3–17 (2017)ADSCrossRefGoogle Scholar
  65. 65.
    T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129(4), 1721–1728 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    R. Ellwood, T. Stratoudaki, S.D. Sharples, M. Clark, M.G. Somekh, Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: An alternative to static strain. J. Acoust. Soc. Am. 135(3), 1064–1070 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    H. Xiao, P.B. Nagy, Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure. J. Appl. Phys. 83(12), 7453–7460 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    Z. Yan, P.B. Nagy, Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti-6Al-4V. NDT&E Int. 33, 213–223 (2000)Google Scholar
  69. 69.
    Z. Yan, P.B. Nagy, Thermo-optical modulation of ultrasonic surface waves for NDE. Ultrasonics 40(1–8), 689–696 (2002)CrossRefGoogle Scholar
  70. 70.
    C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves. J. Acoust. Soc. Am. 131(3) (2012)CrossRefGoogle Scholar
  71. 71.
    C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack closure by pulsed laser-generated acoustic waves. J. Appl. Phys. 113(1), 014906 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    V. Tournat, C. Ni, N. Chigarev, N. Delorme, Z. Shen, V. Gusev, Probing of crack breathing by pulsed laser-generated acoustic waves. Proc. Meet. Acoust. 19(030081), (2013)Google Scholar
  73. 73.
    N. Krohn, R. Stoessel, G. Busse, Acoustic non-linearity for defect selective imaging. Ultrasonics 40(1–8), 633–637 (2002)CrossRefGoogle Scholar
  74. 74.
    I.Y. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    S.-H. Park, J. Kim, K.-Y. Jhang, Relative measurement of the acoustic nonlinearity parameter using laser detection of an ultrasonic wave. Int. J. Precis. Eng. Manuf. 18(10), 1347–1352 (2017)CrossRefGoogle Scholar
  76. 76.
    G. Grégoire, V. Tournat, D. Mounier, V. Gusev, Nonlinear photothermal and photoacoustic processes for crack detection. Eur. Phys. J. Spec. Top. 153, 313–315 (2008)CrossRefGoogle Scholar
  77. 77.
    N. Chigarev, J. Zakrzewski, V. Tournat, V. Gusev, Nonlinear frequency-mixing photoacoustic imaging of a crack. J. Appl. Phys. 106(036101) (2009)ADSCrossRefGoogle Scholar
  78. 78.
    V. Gusev, N. Chigarev, Nonlinear frequency-mixing photoacoustic imaging of a crack: Theory. J. Appl. Phys. 107(124905) (2010)ADSCrossRefGoogle Scholar
  79. 79.
    J. Zakrzewski, N. Chigarev, V. Tournat, V. Gusev, Combined photoacoustic-acoustic technique for crack imaging. Int. J. Thermophys. 31(1), 199–207 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    S. Mezil, N. Chigarev, V. Tournat, V. Gusev, All-optical probing of the nonlinear acoustics of a crack. Opt. Lett. 36(17), 3449–3451 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms. J. Appl. Phys. 114(174901) (2013)ADSCrossRefGoogle Scholar
  82. 82.
    V.E. Gusev, N. Chigarev, S. Mezil, V. Tournat, All-optical nonlinear frequency - mixing acoustics of cracks. Proc. Meet. Acoust. 19(1), 030079 (2013)CrossRefGoogle Scholar
  83. 83.
    S. Mezil, N. Chigarev, V. Tournat, V.E. Gusev, Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method. Ultrasonics 69, 225–235 (2016)CrossRefGoogle Scholar
  84. 84.
    S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Review of a nonlinear frequency-mixing photo-acoustic method for imaging a crack. J. JSNDI 66(12), 589–592 (2017)Google Scholar
  85. 85.
    C. Bakre, P. Rajagopal, K. Balasubramaniam, Nonlinear mixing of laser generated narrowband rayleigh surface waves. AIP Conf. Proc. 1806(1), 020004 (2017)CrossRefGoogle Scholar
  86. 86.
    Y. Liu, S. Yang, X. Liu, Detection and quantification of damage in metallic structures by laser-generated ultrasonics. Appl. Sci. 8(5) (2018)CrossRefGoogle Scholar
  87. 87.
    P. Liu, J. Jang, S. Yang, H. Sohn, Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation. Opt. Lasers Eng. 110, 420–430 (2018)CrossRefGoogle Scholar
  88. 88.
    S. Mezil, Nonlinear optoacoustics method for crack detection & characterization. Ph.D. thesis, LUNAM Université, Université du Maine (2012)Google Scholar
  89. 89.
    Y. Ohara, K. Takahashi, Y. Ino, K. Yamanaka, T. Tsuji, T. Mihara, High-selectivity imaging of closed cracks in a coarse-grained stainless steel by nonlinear ultrasonic phased array. NDT & E Int. 91, 139–147 (2017)CrossRefGoogle Scholar
  90. 90.
    O.B. Wright, K. Kawashima, Coherent phonon detection from ultrasfast surface vibrations. Phys. Rev. Lett. 69(11), 1668–1671 (1992)ADSCrossRefGoogle Scholar
  91. 91.
    J.E. Rothenberg, Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy. Opt. Lett. 13(9), 713–715 (1988)ADSCrossRefGoogle Scholar
  92. 92.
    V. Gusev, A. Mandelis, R. Bleiss, Theory of second harmonic thermal wave generation: 1D geometry. Int. J. Thermophys. 14, 321 (1993)ADSCrossRefGoogle Scholar
  93. 93.
    V. Gusev, A. Mandelis, R. Bleiss, Theory of strong photothermal nonlinearity from sub-surface non-stationary (“breathing”) cracks in solids. Appl. Phys. A 57, 229–233 (1993)ADSCrossRefGoogle Scholar
  94. 94.
    V. Gusev, A. Mandelis, R. Bleiss, Non-linear photothermal response of thin solid films and coatings. Mat. Sci. Eng. B 26, 111 (1994)CrossRefGoogle Scholar
  95. 95.
    V. Gusev, A. Mandelis, R. Bleiss, Theory of combined acousto-photo-thermal spectral decomposition in condensed phases: parametric generation of thermal waves by a non-stationary (“breathing”) sub-surface defect. Mat. Sci. Eng. B 26, 121 (1994)CrossRefGoogle Scholar
  96. 96.
    V.E. Gusev, B. Castagnède, A.G. Moussatov, Hysteresis in response of nonlinear bistable interface to continuously varying acoustic loading. Ultrasonics 41, 643–654 (2003)CrossRefGoogle Scholar
  97. 97.
    I.Y. Solodov, B.A. Korshak, Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys. Rev. Lett. 88(1), 014303 (2001)Google Scholar
  98. 98.
    I. Y. Solodov, B. A. Korshak, K. Pfleiderer, J. Wackerl, and G. Busse. Nonlinear ultrasonics inspection and NDE using subharmonic and self-modulation modes. WCU. Paris, France (2003)Google Scholar
  99. 99.
    V. Tournat, C. Inserra, V. Gusev, Non-cascade frequency-mixing processes for elastic waves in unconsolidated granular materials. Ultrasonics 48(6), 492–497 (2008)CrossRefGoogle Scholar
  100. 100.
    I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)CrossRefGoogle Scholar
  101. 101.
    K.L. Johnson, Contact Mechanics, 2nd edn. (Cambridge University Press, Cambridge, Angleterre, 1985)Google Scholar
  102. 102.
    G.C. Wetzel Jr., J.B. Spiecer, Nonlinear effects in photothermal-optical-beam-deflection imaging. Can. J. Phys. 64, 1269 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sylvain Mezil
    • 1
    Email author
  • Nikolay Chigarev
    • 1
  • Vincent Tournat
    • 1
  • Vitalyi Gusev
    • 1
  1. 1.LAUMLe Mans UniversitéLe MansFrance

Personalised recommendations