Nonlinear Ultrasonic Phased Array for Measurement of Closed-Crack Depth

  • Yoshikazu OharaEmail author
  • Tsuyoshi Mihara
  • Kazushi Yamanaka
Part of the Springer Series in Measurement Science and Technology book series (SSMST)


This chapter summarizes the comprehensive review of the nonlinear ultrasonic phased array (PA) methods for the measurement of closed-crack depth. Various nonlinear ultrasonic PA methods are categorized into four groups: (I) subharmonics, (II) parallel and sequential transmission, (III) all-elements, odd-elements, and even-elements transmission, and (IV) utilization of thermal stress. Each method is described in the order of principles, experimental conditions and imaging results, key features.



It is our great pleasure to thank all those who have collaborated with us regarding nonlinear ultrasonic PA. Financial support by Japan Society for the Promotion of Science (JSPS) KAKENHI and other various projects for part of the work described in this chapter is gratefully acknowledged.

Supplementary material

466210_1_En_5_MOESM1_ESM.pdf (499 kb)
Supplementary material 1 (PDF 0.499 MB)
466210_1_En_5_MOESM2_ESM.pdf (81 kb)
Supplementary material 1 (PDF 0.081 MB)


  1. 1.
    J. Blitz, G. Simpson, Ultrasonic Methods of Non-Destructive Testing (Chapman & Hall, London, 1996)Google Scholar
  2. 2.
    L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation (Plenum, New York, 1998)CrossRefGoogle Scholar
  3. 3.
    J.D. Achenbach, Quantitative nondestructive evaluation. Int. J. Solids Struct. 37, 13–27 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    B.W. Drinkwater, P.D. Wilcox, Ultrasonic arrays for non-destructive evaluation: a review. NDT&E Int. 39, 525–541 (2006)CrossRefGoogle Scholar
  5. 5.
    L.W. Schmerr, Fundamentals of Ultrasonic Phased Array (Springer, Cham, 2015)CrossRefGoogle Scholar
  6. 6.
    T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Academic, New York, 2004)Google Scholar
  7. 7.
    S.-C. Wooh, Y. Shi, Optimum beam steering of linear phased arrays. Wave Motion 29, 245–265 (1999)CrossRefGoogle Scholar
  8. 8.
    B. Puel, D. Lesselier, S. Chatillon, P. Calmon, Optimization of ultrasonic arrays design and setting using a differential evalution. NDT&E Int. 44, 797–803 (2011)CrossRefGoogle Scholar
  9. 9.
    D.H. Johnson, D.E. Dudgeon, Array Signal Processing, Concepts and Techniques (Prentis Hall, Upper Saddle River, 1993)zbMATHGoogle Scholar
  10. 10.
    C. Holmes, B.W. Drinkwater, P.D. Wilcox, Post-Processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT&E Int. 38, 701–711 (2005)CrossRefGoogle Scholar
  11. 11.
    M.-L. Zhu, F.-Z. Xuan, S.-T. Tu, Effect of load ratio on fatigue crack growth in the near-threshold regime: a literature review, and a combined crack closure and driving force approach. Eng. Fract. Mech. 141, 57–77 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Horinouchi, M. Ikeuchi, Y. Shintaku, Y. Ohara, K. Yamanaka, Evaluation of closed stress corrosion cracks in Ni-based alloy weld metal using subharmonic phased array. Jpn. J. Appl. Phys. 51, 07GB15-1-5 (2012)CrossRefGoogle Scholar
  13. 13.
    J.D. Frandsen, R.V. Inman, O. Buck, A comparison of acoustic and strain gauge techniques for crack closure. Int. J. Fract. 11, 345–348 (1975)CrossRefGoogle Scholar
  14. 14.
    T. Mihara, S. Nomura, M. Akino, K. Yamanaka, Relationship between crack opening behavior and crack tips scattering and diffraction of longitudinal waves. Mater. Eval. 62, 943–947 (2004)Google Scholar
  15. 15.
    Y. Ohara, T. Mihara, K. Yamanaka, Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads. Ultrasonics 51, 661–666 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Elber, Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45 (1970)CrossRefGoogle Scholar
  17. 17.
    A.T. Stewart, The influence of environment and stress ratio on fatigue crack growth at near threshold stress intensities in low-alloy steels. Eng. Fract. Mech. 13, 463–478 (1980)CrossRefGoogle Scholar
  18. 18.
    R.O. Ritchie, S. Suresh, C.M. Moss, Near-threshold fatigue crack growth in 2 1/4Cr-1Mo pressure vessel steel in air and hydrogen. J. Eng. Mater. Tech. 102, 293–299 (1980)CrossRefGoogle Scholar
  19. 19.
    K. Minakawa, A.J. McEvily, On crack closure in the near-threshold region. Scr. Metall. 15, 633–636 (1981)CrossRefGoogle Scholar
  20. 20.
    Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)CrossRefGoogle Scholar
  22. 22.
    K.H. Matlack, J.-Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34, 273-1-23 (2015)Google Scholar
  23. 23.
    T. Kundu (ed.), Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation (Springer, New York, 2018)Google Scholar
  24. 24.
    M.A. Breazeale, D.O. Thompson, Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3(5), 77–78 (1963)ADSCrossRefGoogle Scholar
  25. 25.
    O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33(5), 371–373 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    I.Y. Solodov, Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)CrossRefGoogle Scholar
  27. 27.
    I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)CrossRefGoogle Scholar
  28. 28.
    R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)CrossRefGoogle Scholar
  29. 29.
    R.A. Guyer, P.A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley, New York, 2009)CrossRefGoogle Scholar
  30. 30.
    M.C. Remillieux, T.J. Ulrich, H.E. Goodman, J.A. Ten Cate, Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: a detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics. J. Geophys. Res. Sol. Earth 122(11), 8892–8909 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    H. Ogi, M. Hirao, S. Aoki, Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels. J. Appl. Phys. 90(1), 438–442 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Ohara, K. Kawashima, Detection of internal micro defects by nonlinear resonant ultrasonic method using water immersion. Jpn. J. Appl. Phys. 43(5B), 3119–3120 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    S. Biwa, S. Hiraiwa, E. Matsumoto, Pressure-dependent stiffnesses and nonlinear ultrasonic response of contacting surfaces. J. Sol. Mech. Mater. Eng. 3(1), 10–21 (2009)CrossRefGoogle Scholar
  34. 34.
    I.Y. Solodov, C.A. Vu, Popping nonlinearity and chaos in vibrations of a contact interface between solids. Acoust. Phys. 39, 476–479 (1993)ADSGoogle Scholar
  35. 35.
    B.A. Korshak, I.Y. Solodov, E.M. Ballad, DC effects, sub-harmonics, stochasticity and “memory” for contact acoustic non-linearity. Ultrasonics 40, 707–713 (2002)CrossRefGoogle Scholar
  36. 36.
    I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    K. Yamanaka, T. Mihara, T. Tsuji, Evaluation of closed cracks by model analysis of subharmonic ultrasound. Jpn. J. Appl. Phys. 43, 3082–3087 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Ohara, T. Mihara, K. Yamanaka, Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics 44, 194–199 (2006)CrossRefGoogle Scholar
  39. 39.
    J.G. Sessler, V. Weiss, Crack Detection Apparatus and Method. US Patent, 38667836 (1975)Google Scholar
  40. 40.
    K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12, 17–30 (2000)CrossRefGoogle Scholar
  41. 41.
    D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT&E Int. 34, 231–238 (2001)CrossRefGoogle Scholar
  42. 42.
    V.V. Kazakov, A. Sutin, P.A. Johnson, Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81(4), 646–648 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Ohara, T. Mihara, R. Sasaki, T. Ogata, S. Yamamoto, Y. Kishimoto, K. Yamanaka, Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90, 011802-1-3 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    J.N. Potter, A.J. Croxford, P.D. Wilcox, Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113, 144031-1-5 (2014)Google Scholar
  45. 45.
    S. Haupert, G. Renaud, A. Schnumm, Ultrasonic imaging of nonlinear scatterers buried in a medium. NDT&E Int. 87, 1–6 (2017)CrossRefGoogle Scholar
  46. 46.
    Y. Ohara, K. Takahashi, S. Murai, K. Yamanaka, High-selectivity imaging of closed cracks using elastic waves with thermal stress induced by global preheating and local cooling. Appl. Phys. Lett. 103, 031917-1-5 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Ohara, S. Yamamoto, T. Mihara, K. Yamanaka, Ultrasonic evaluation of closed cracks using subharmonic phased array. Jpn. J. Appl. Phys. 47(5), 3908–3915 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    S. Yamamoto, Y. Ohara, T. Mihara, K. Yamanaka, Application of laser interferometer to subharmonic phased array for crack evaluation (SPACE). J. Jpn. Soc. Nondestr. Insp. 57(4), 198–203 (2008)Google Scholar
  49. 49.
    Y. Ohara, H. Endo, T. Mihara, K. Yamanaka, Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48(7), 07GD01-1-6 (2009)CrossRefGoogle Scholar
  50. 50.
    Y. Ohara, Y. Shintaku, S. Horinouchi, M. Hashimoto, Y. Yamaguchi, M. Tagami, K. Yamanaka, Ultrasonic imaging of stress corrosion crack formed in high temperature pressurized water using subharmonic phased array. Proc. Mtgs. Acoust. 10, 045007-1-8 (2010)Google Scholar
  51. 51.
    Y. Ohara, H. Endo, M. Hashimoto, K. Yamanaka, Monitoring growth of closed fatigue crack using subharmonic phased array. AIP Conf. Proc. 1211, 903–909 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Ohara, S. Horinouchi, Y. Shintaku, R. Shibasaki, Y. Yamaguchi, M. Tagami, K. Yamanaka, High-selectivity imaging of closed cracks in weld part of stainless steel using subharmonic phased array with a single array transducer. J. Jpn. Soc. Nondestr. Insp. 60(11), 658–664 (2011)Google Scholar
  53. 53.
    K. Yamanaka, Y. Ohara, M. Oguma, Y. Shintaku, Two-dimensional analyses of subharmonic generation at closed cracks in nonlinear ultrasonics. Appl. Phys. Express 4, 076601-1-3 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Ohara, Y. Shintaku, S. Horinouchi, M. Ikeuchi, K. Yamanaka, Enhancement of selectivity in nonlinear ultrasonic imaging of closed cracks using amplitude difference phased array. Jpn. J. Appl. Phys. 51, 07GB18-1-6 (2012)CrossRefGoogle Scholar
  55. 55.
    K. Jinno, A. Sugawara, Y. Ohara, K. Yamanaka, Analysis on nonlinear images of vertical closed cracks by damped double node model. Mater. Trans. 55(7), 1017–1023 (2014)CrossRefGoogle Scholar
  56. 56.
    T. Mihara, H. Ishida, Improvement in the identification of a crack tip echo in ultrasonic inspection using large displacement ultrasound transmission. J. Phys. Conf. Ser. 520, 012010-1-6 (2014)Google Scholar
  57. 57.
    A. Ouchi, A. Sugawara, Y. Ohara, K. Yamanaka, Subharmonic phased array for crack evaluation using surface acoustic wave. Jpn. J. Appl. Phys. 54, 07HC05-1-6 (2015)CrossRefGoogle Scholar
  58. 58.
    A. Sugawara, K. Jinno, Y. Ohara, K. Yamanaka, Closed-crack imaging and scattering behavior analysis using confocal subharmonic phased array. Jpn. J. Appl. Phys. 54, 07HC08-1-8 (2015)CrossRefGoogle Scholar
  59. 59.
    C.-S. Park, J.-W. Kim, S. Cho, D.-C. S, A high resolution approach for nonlinear sub-harmonic imaging. NDT&E Int. 79, 114–122 (2016)CrossRefGoogle Scholar
  60. 60.
    Y. Ohara, J. Potter, S. Haupert, H. Nakajima, T. Tsuji, T. Mihara, Multi-mode nonlinear ultrasonic phased array for closed crack imaging. Proc. Mtgs. Acoust. 34, 055001-1-5 (2018)Google Scholar
  61. 61.
    Y. Ohara, J. Potter, H. Nakajima, T. Tsuji, T. Mihara, Multi-mode nonlinear ultrasonic phased array for imaging closed cracks. Jpn. J. Appl. Phys. 58, SGGB06-1-7 (2019)CrossRefGoogle Scholar
  62. 62.
    I.Y. Solodov, N. Krohn, G. Busse, Nonlinear Ultrasonic NDT for Early Defect Recognition and Imaging. Proceedings of 10th European Conference on Non-Destructive Testing (2010)Google Scholar
  63. 63.
    R. Koda, T. Mihara, K. Inoue, G. Konishi, Y. Udagawa, Transmission of larger amplitude ultrasound with SiC transistor pulser for subharmonic signal measurements at closed cracks. Phys. Proc. 70, 528–531 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    M. Scalerandi, A.S. Gliozzi, C.L.E. Bruno, D. Masera, P. Bocca, A scaling method to enhance detection of a nonlinear elastic response. Appl. Phys. Lett. 92, 101912-1-3 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B 79, 0641108-1-13 (2009)Google Scholar
  66. 66.
    M. Scalerandi, M. Griffa, P. Antonaci, M. Wyrzykowski, P. Lura, Nonlinear elastic response of thermally damaged consolidated granular media. J. Appl. Phys. 113, 154902-1-9 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    P. Antonaci, C.L.E. Bruno, M. Scalerandi, F. Tondolo, Effects of corrosion on linear and nonlinear elastic properties of reinforced concrete. Cem. Concr. Res. 51, 96–103 (2013)CrossRefGoogle Scholar
  68. 68.
    M. Ikeuchi, K. Jinno, Y. Ohara, K. Yamanaka, Improvement of closed crack selectivity in nonlinear ultrasonic imaging using fundamental wave amplitude difference. Jpn. J. Appl. Phys. 52, 07HC08-1-5 (2013)CrossRefGoogle Scholar
  69. 69.
    Y. Ohara, K. Yamanaka, Japan Patent, 6,025,049 (2016)Google Scholar
  70. 70.
    X. Han, W. Li, Z. Zeng, L.D. Favro, R.L. Thomas, Acsoutic chaos and sonic infrared imaging. Appl. Phys. Lett. 81, 3188–3190 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    F. Mabrouki, M. Thomas, M. Genest, A. Fahr, Frictional heating model for efficient use of vibrothermography. NDT&E Int. 42, 345–352 (2009)CrossRefGoogle Scholar
  72. 72.
    L. Pieczonka, F. Aymerich, G. Brozek, M. Szwedo, W.J. Staszewski, T. Uhl, Nonlinear vibroacoustic wave modulations for structural damage detection: an overview. Struct. Control Health Monit. 20, 626–638 (2013)CrossRefGoogle Scholar
  73. 73.
    I. Solodov, G. Busse, Resonance ultrasonic thermography: highly efficient contact and air-coupled remote modes. Appl. Phys. Lett. 102, 061905-1-3 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    K. Truyaert, V. Aleshin, K.V.D. Abeele, S. Delrue, Theoretical calculation of the instantaneous friction-induced energy losses in arbitrarily excited axisymmetric mechanical contact systems. Int. J. Solids Struct. 158, 268–276 (2019)CrossRefGoogle Scholar
  75. 75.
    J.N. Potter, J. Chen, A.J. Croxford, B.W. Drinkwater, Ultrasonic phased array imaging of contact acoustic nonlinearity. Proc. Mtgs. Acoust. 29, 045002-1-6 (2016)Google Scholar
  76. 76.
    J. Cheng, J.N. Potter, A.J. Croxford, B.W. Drinkwater, Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging. Smart Mater. Struct., 26, 05506-1-10 (2017)CrossRefGoogle Scholar
  77. 77.
    J. Cheng, J.N. Potter, B.W. Drinkwater, The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging. Smart Mater. Struct. 27, 065002-1-10 (2018)CrossRefGoogle Scholar
  78. 78.
    J. Potter, A.J. Croxford, Characterization of nonlinear ultrasonic diffuse energy imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(5), 870–880 (2018)CrossRefGoogle Scholar
  79. 79.
    S. Haupert, Y. Ohara, E. Carcreff, G. Renaud, Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks. Ultrasonics 96, 132–139 (2019)CrossRefGoogle Scholar
  80. 80.
    Y. Ohara, H. Nakajima, S. Haupert, T. Tsuji, T. Mihara, Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks. J. Acoust. Soc. Am. 146(1), 266–277 (2019)ADSCrossRefGoogle Scholar
  81. 81.
    Y. Ohara, H. Nakajima, T. Tsuji, T. Mihara, Nonlinear surface-acoustic-wave phased array with fixed-voltage fundamental wave amplitude difference for imaging closed cracks. NDT&E Int. 108, 102170–1–10 (2019)Google Scholar
  82. 82.
    G. Tang, L.J. Jacobs, J. Qu, Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity. J. Acoust. Soc. Am. 131, 2570–2578 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    C.M. Kube, Scattering of harmonic waves from a nonlinear elastic inclusion. J. Acoust. Soc. Am. 141, 4756–4767 (2017)ADSCrossRefGoogle Scholar
  84. 84.
    Y. Wang, J.D. Achenbach, Reflection of ultrasound from a region of cubic material nonlinearity due to harmonic generation. Acta Mech. 229, 763–778 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    N. Walker, C.J. Beevers, A fatigue crack closure mechanism in titanium. Fatigue Eng. Mater. Struct. 1, 135–148 (1979)CrossRefGoogle Scholar
  86. 86.
    J. Jin, J. Rivière, Y. Ohara, P. Shokouhi, Dynamic acoustic-elastic response of single fatigue cracks with different microstructural features: an experimental investigation. J. Appl. Phys. 124, 075303-1-14 (2018)ADSCrossRefGoogle Scholar
  87. 87.
    A. Steuwer, M. Rahman, A. Shterenlikht, M.E. Fitzpatrick, L. Edwards, P.J. Withers, The evolution of crack-tip stresses during a fatigue overload event. Acta Mater. 58, 4039–4052 (2010)CrossRefGoogle Scholar
  88. 88.
    J.D. Carroll, W. Abuzaid, J. Lambros, H. Sehitoglu, High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int. J. Fatigue 57, 140–150 (2013)CrossRefGoogle Scholar
  89. 89.
    I.Y. Solodov, B.A. Korshak, Instability, chaos, and ‘memory’ in acoustic-wave-crack interaction. Phys. Rev. Lett. 88(1), 014303-1-3 (2001)Google Scholar
  90. 90.
    A. Moussatov, V. Gusev, B. Castagnede, Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys. Rev. Lett. 90(12), 124301-1-4 (2003)Google Scholar
  91. 91.
    R.B. Mignogna, R.E. Green Jr., J.C. Duke, E.G. Henneke, K.L. Reifsnifer, Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics 19, 159–163 (1981)CrossRefGoogle Scholar
  92. 92.
    I. Solodov, G. Busse, Nonlinear air-coupled emission: the signature to reveal and image microdamage in solid materials. Appl. Phys. Lett. 91, 251910-1-3 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    I. Solodov, J. Bai, S. Bekgulyan, G. Busse, A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl. Phys. Lett. 99, 211911-1-3 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    P.B. Nagy, G. Blaho, Identification of distributed fatigue cracking by dynamic crack-closure. Rev. Prog. Quant. Nondestr. Eval. 14, 1979–1986 (1995)CrossRefGoogle Scholar
  95. 95.
    S.R. Ahmed, M. Saka, Y. Matsuura, D. Kobayashi, Y. Miyachi, Y. Kagiya, An effective method of local thermal treatment for sensitive NDE of closed surface cracks. Res. Nondestruct. Eval. 21, 51–70 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    H. Xiao, P.B. Nagy, Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure. J. Appl. Phys. 83(12), 7453–7460 (1998)ADSCrossRefGoogle Scholar
  97. 97.
    Z. Yan, P.B. Nagy, Thermo-optical modulation of ultrasonic surface waves for NDE. Ultrasonics 40, 689–696 (2002)CrossRefGoogle Scholar
  98. 98.
    C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves. JASA Express Lett. 131(3), EL250–EL255 (2012)Google Scholar
  99. 99.
    C. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. Shen, V.E. Gusev, Probing of laser-induced crack closure by pulsed laser-generated acoustic waves. J. Appl. Phys. 113, 014906-1-8 (2013)Google Scholar
  100. 100.
    S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms. J. Appl. Phys. 114, 174901-1-17 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method. Ultrasonics 69, 225–235 (2016)CrossRefGoogle Scholar
  102. 102.
    H. Tohmyoh, M. Saka, Y. Kondo, Thermal opening technique for nondestructive evaluation of closed cracks. J. Pressure Vessel Technol. 129, 103–108 (2007)CrossRefGoogle Scholar
  103. 103.
    Y. Ohara, K. Takahashi, K. Jinno, K. Yamanaka, High-selectivity ultrasonic imaging of closed cracks using global preheating and local cooling. Mater. Trans. 55(7), 1003–1010 (2014)CrossRefGoogle Scholar
  104. 104.
    K. Takahashi, K. Jinno, Y. Ohara, K. Yamanaka, Evaluation of crack closure stress by analyses of ultrasonic phased array images during global preheating and local cooling. Jpn. J. Appl. Phys. 53, 07KC20-1-7 (2014)CrossRefGoogle Scholar
  105. 105.
    K. Tkahashi, K. Ohmachi, Y. Ohara, K. Yamanaka, Estimation of saturated duration in phased array imaging of closed cracks by global preheating and local cooling. J. Jpn. Soc. Nondestr. Inspect. 65(10), 513–520 (2016)Google Scholar
  106. 106.
    Y. Ohara, K. Takahashi, Y. Ino, K. Yamanaka, T. Tsuji, T. Mihara, High-selectivity imaging of closed cracks in a coarse-grained stainless steel by nonlinear ultrasonic phased array. NDT&E Int. 91, 139–147 (2017)CrossRefGoogle Scholar
  107. 107.
    N. Noraphaiphipaksa, T. Putta, A. Manonukul, C. Kanchanomai, Interaction of plastic zone, pores, and stress ratio with fatigue crack growth of sintered stainless steel. Int. J. Fract. 176, 25–38 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yoshikazu Ohara
    • 1
    Email author
  • Tsuyoshi Mihara
    • 1
  • Kazushi Yamanaka
    • 1
  1. 1.Department of Materials ProcessingTohoku UniversitySendaiJapan

Personalised recommendations