Advertisement

The Biodiversity Quota

  • Kate Meyer
  • Peter Newman
Chapter
  • 33 Downloads

Abstract

Recent human activity has had more severe impacts on species loss than any other period in human history. Despite efforts to manage this, the impacts are continuing to increase. Biodiversity is very important to the Earth-system function and to humanity directly because of the ecosystem services it provides.

It is extremely difficult to link biosphere health to human activity as there are so many different ways that human activity can be damaging to the biosphere. Human impacts on biodiversity through climate change and pollution are addressed through Planetary Quotas for carbon dioxide, MeNO, aerosols, Montreal gases, and forestland. Habitat destruction and segregation is one of the greatest human drivers of biodiversity loss. A new proxy indicator has been developed by the UNEP to link land use to pressures on biosphere integrity, “percentage disappearing species”. It is an estimation of species extinctions caused through land-use change. This indicator is the best proxy indicator available with which to assess the effects on human activity on global extinction rate.

The Planetary Quota for biodiversity is percentage disappeared fraction of species ≤1 × 10−4/y.

References

  1. ADB (2012) Special chapter: green urbanization in Asia. Key Indicators for Asia and the Pacific 2012, 43rd edn. Asian Development Bank, PhillipinesGoogle Scholar
  2. Asafu-Adjaye J (2003) Biodiversity loss and economic growth: a cross-country analysis. Contemp Econ Policy 21:173–185CrossRefGoogle Scholar
  3. Bibby CJ (1994) Recent past and future extinctions in birds. Philos Trans R Soc Lond Ser B Biol Sci 344:35–40CrossRefGoogle Scholar
  4. Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, Mcgeoch MA, Mcrae L, Minasyan A, Hernández Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164CrossRefGoogle Scholar
  5. CBD (2006) 2nd global biodiversity outlook report. https://www.cbd.int/gbo2/
  6. CBD (2014) Pathways of introduction of invasive species, their prioritization and management. UNEP, Convention on Biological Diversity, MontrealGoogle Scholar
  7. CBD (2018) History of the convention [Online]. Available: https://www.cbd.int/history/. Accessed 25/01/2018
  8. Chapin IFS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefGoogle Scholar
  9. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 61(5):871–883. https://doi.org/10.1093/sysbio/syr080
  10. Cucek L, Klemes JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20CrossRefGoogle Scholar
  11. Dietz S, Adger WN (2003) Economic growth, biodiversity loss and conservation effort. J Environ Manag 68:23–35CrossRefGoogle Scholar
  12. Ehrlich PR (1994) Energy use and biodiversity loss. Philos Trans R Soc Lond Ser B Biol Sci 344:99–104CrossRefGoogle Scholar
  13. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74CrossRefGoogle Scholar
  14. FAO (2010) Forestry. Food and Agriculture Organisation of the UN, Rome, ItalyGoogle Scholar
  15. FAO (2018) The state of world fisheries and aquaculture 2018—Meeting the sustainable development goals. RomeGoogle Scholar
  16. Galli A, Wackernagel M, Iha K, Lazarus E (2014) Ecological footprint: implications for biodiversity. Biol Conserv 173:121–132CrossRefGoogle Scholar
  17. Groombridge B (1992) Global biodiversity : status of the earth’s living resources : a report/compiled by the World conservation monitoring centre, London. Chapman & Hall, LondonGoogle Scholar
  18. Hanafiah MM, Hendriks AJ, Huijbregts MAJ (2012) Comparing the ecological footprint with the biodiversity footprint of products.(report). J Clean Prod 37:107CrossRefGoogle Scholar
  19. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JR (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853CrossRefGoogle Scholar
  20. Harper DAT, Hammarlund EU, Rasmussen CM (2014) End Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–1307CrossRefGoogle Scholar
  21. Houdet J, Germaneau C (2014) Accounting for biodiversity and ecosystem services from an ema perspective: towards a standardised biodiversity footprint methodology. Account Biodiver.  https://doi.org/10.4324/9780203097472
  22. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change [Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.)], Cambridge, United Kingdom and New York, NY, USA, Cambridge University PressGoogle Scholar
  23. Kerr JT, Currie DJ (1995) Effects of human activity on global extinction risk - efectos de la actividad humana sobre el riesgo de extinción global. Conserv Biol 9:1528–1538CrossRefGoogle Scholar
  24. Kitzes J, Berlow E, Conlisk E, Erb K, Iha K, Martinez N, Newman EA, Plutzar C, Smith AB, Harte J (2017) Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv Lett 10:531–538CrossRefGoogle Scholar
  25. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012a) International trade drives biodiversity threats in developing nations. Nature 486:109CrossRefGoogle Scholar
  26. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012b) International trade drives biodiversity threats in developing nations–supplementary information. Nature 486:109CrossRefGoogle Scholar
  27. Lovejoy TE (2006) Protected areas: a prism for a changing world. Trends Ecol Evol 21:329–333CrossRefGoogle Scholar
  28. Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ, Purvis A, Scholes RJ, Seddon AWR, Solan M, Steffen W, Woodward G (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Chang 28:289–297CrossRefGoogle Scholar
  29. Margules CR, Nicholls AO, Pressey RL (1988) Selecting networks of reserves to maximise biological diversity. Biol Conserv 43:63–76CrossRefGoogle Scholar
  30. MEA (2005) Ecosystems and human Well-being: biodiversity synthesis. World Resources Institute, Washinton, DCGoogle Scholar
  31. Moran D, Petersone M, Verones F (2016) On the suitability of input-output analysis for calculating product-specific biodiversity footprints. Ecol Indic 60:192–201CrossRefGoogle Scholar
  32. Naidoo R, Adamowicz WL (2001) Effects of economic prosperity on numbers of threatened species–efectos de la prosperidad económica sobre los números de especies amenazadas. Conserv Biol 15:1021–1029CrossRefGoogle Scholar
  33. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32CrossRefGoogle Scholar
  34. Secretariat of the CBD (2001) In: DIVERSITY SOT, B CO (eds) Global biodiversity outlook 1. UNEP, CBD, MontrealGoogle Scholar
  35. Secretariat of the CBD (2006) Global biodiversity outlook 2. Convention on Biological Diversity, MontrealGoogle Scholar
  36. Secretariat of the CBD (2010) Global biodiversity outlook 3. Convention on Biological Diversity, MontrealGoogle Scholar
  37. Secretariat of the CBD (2014) Global biodiversity outlook 4. Convention on Biological Diversity, MontrealGoogle Scholar
  38. Soulé ME, Sanjayan MA (1998) ECOLOGY: conservation targets: do they help? Science 279:2060CrossRefGoogle Scholar
  39. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefGoogle Scholar
  40. The Brundtland Commission (1987) Our common future. World Commission on Environment and DevelopmentGoogle Scholar
  41. Thomas JA, Morris MG, Hambler C (1994) Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom [and discussion]. Philos Trans R Soc B Biol Sci 344:47–54CrossRefGoogle Scholar
  42. Tittensor DP, Walpole M, Hill SL, Boyce DG, Britten GL, Burgess ND, Butchart SH, Leadley PW, Regan EC, Alkemade R, Baumung R, Bellard C, Bouwman L, Bowles-Newark NJ, Chenery AM, Cheung WW, Christensen V, Cooper HD, Crowther AR, Dixon MJ, Galli A, Gaveau V, Gregory RD, Gutierrez NL, Hirsch TL, Hoft R, Januchowski-Hartley SR, Karmann M, Krug CB, Leverington FJ, Loh J, Lojenga RK, Malsch K, Marques A, Morgan DH, Mumby PJ, Newbold T, Noonan-Mooney K, Pagad SN, Parks BC, Pereira HM, Robertson T, Rondinini C, Santini L, Scharlemann JP, Schindler S, Sumaila UR, Teh LS, van Kolck J, Visconti P, YE Y (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346:241–244CrossRefGoogle Scholar
  43. UN (2010) Resumed review conference on the agreement relating to the conservation and management of straddling fish stocks and highly migratory fish stocks. United Nations Department of Public InformationGoogle Scholar
  44. UN (2015) United nations sustainable development goals [Online]. Available: https://sustainabledevelopment.un.org/sdgs. Accessed
  45. UNEP (2016) In: Frischknecht R, Jolliet O (eds) Global guidance for life cycle impact assessment indicators. UNEPGoogle Scholar
  46. Vačkář D (2012) Ecological footprint, environmental performance and biodiversity: a cross-national comparison. Ecol Indic 16:40–46CrossRefGoogle Scholar
  47. Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci U S A 99:9266–9271CrossRefGoogle Scholar
  48. Watts J. (2019) Human society under urgent threat from loss of Earth’s natural life. The GuradianGoogle Scholar
  49. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615CrossRefGoogle Scholar
  50. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, Mcclanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Kate Meyer
    • 1
  • Peter Newman
    • 2
  1. 1.The Planetary Accounting NetworkAucklandNew Zealand
  2. 2.Curtin UniversityWestern AustraliaAustralia

Personalised recommendations