Green Acoustic Absorber from Pineapple Leaf Fibers

  • Azma PutraEmail author
  • Iwan Prasetiyo
  • Zulkefli Selamat
Part of the Green Energy and Technology book series (GREEN)


The environmental issue becomes the central topic in the discussion for the last decade. Scientific works to overcome the problems are thus progressing including finding the alternative natural materials to replace the conventional synthetic ones. This chapter discusses the use of natural fibers extracted from pineapple leaf as natural acoustic absorber. The preparation for absorber samples is discussed, and the effects of fiber density, sample thickness, and introduction of backed air gap were measured using normal field incidence method in an impedance tube. The measured results reveal that the pineapple fibers can have good sound absorption above 500 Hz for thickness of 30 mm and density of 117 kg/m3. Almost the same performance can be achieved for thickness of 20 mm by introducing backed air gap of 20 mm. The effect of the quarter-wavelength with the presence of backed air gap can be clearly observed where this can be used as the design guide to determine the required thickness of the absorber.


Sound absorber Absorption coefficient Acoustic material Pineapple fiber 


  1. 1.
    Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24CrossRefGoogle Scholar
  2. 2.
    Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials, 2nd edn. WileyGoogle Scholar
  3. 3.
    Arib R, Sapuan S, Ahmad M, Paridah M, Zaman HK (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396CrossRefGoogle Scholar
  4. 4.
    Asdrubali F, D’Alessandro F, Schiavoni S (2015) A review of unconventional sustainable building insulation materials. Sustain Mater Technol 4:1–17Google Scholar
  5. 5.
    Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:950567 (16 pages).
  6. 6.
    Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, Stansfeld S (2014) Auditory and non-auditory effects of noise on health. Lancet 383(9925):1325–1332CrossRefGoogle Scholar
  7. 7.
    Bell LH, Bell DH (1994) Industrial noise control: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Berardi U, Iannace G (2015) Acoustic characterization of natural fibers for sound absorption applications. Build Environ 94:840–852CrossRefGoogle Scholar
  9. 9.
    Champoux Y, Allard JF (1991) Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys 70(4):1975–1979CrossRefGoogle Scholar
  10. 10.
    Cherian BM, Leão AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725CrossRefGoogle Scholar
  11. 11.
    Cox T, D’Antonio P (2016) Acoustic absorbers and diffusers: theory, design and application, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Delany M, Bazley E (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3(2):105–116CrossRefGoogle Scholar
  13. 13.
    Devi LU, Bhagawan S, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64(9):1739–1748CrossRefGoogle Scholar
  14. 14.
    Dunne R, Desai D, Sadiku R (2017) Material characterization of blended sisal-kenaf composites with an abs matrix. Appl Acoust 125:184–193CrossRefGoogle Scholar
  15. 15.
    Ersoy S, Kucuk H (2009) Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Appl Acoust 70(1):215–220CrossRefGoogle Scholar
  16. 16.
    Fahy F (2013) Foundations of engineering acoustics. Elsevier Academic Press, LondonGoogle Scholar
  17. 17.
    Fatima S, Mohanty A (2011) Acoustical and fire-retardant properties of jute composite materials. Appl Acoust 72(2–3):108–114CrossRefGoogle Scholar
  18. 18.
    Fouladi MH, Nor MJM, Ayub M, Leman ZA (2010) Utilization of coir fiber in multilayer acoustic absorption panel. Appl Acoust 71(3):241–249CrossRefGoogle Scholar
  19. 19.
    Ingard U (1994) Notes on sound absorption technology. Noise Control Foundation, New YorkGoogle Scholar
  20. 20.
    Ismail L, Ghazali MI, Mahzan S, Zaidi AA (2010) Sound absorption of arenga pinnata natural fiber. World Academy of Science, Engineering and Technology 67:804–806Google Scholar
  21. 21.
    ISO-10534-2 (2001) Acoustics-determination of sound absorption coefficient and impedance in impedances tubes-part 2: transfer-function method. ISO, Brussels, BelgiumGoogle Scholar
  22. 22.
    ISO-354 (2003) Acoustics-measurement of sound absorption in a reverberation room. British Standards InstitutionGoogle Scholar
  23. 23.
    Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402CrossRefGoogle Scholar
  24. 24.
    Kuttruff H (2016) Room acoustics, 6th edn. CRC PressGoogle Scholar
  25. 25.
    Lim ZY, Putra A, Nor MJM, Yaakob MY (2018) Sound absorption performance of natural kenaf fibres. Appl Acoust 130:107–114CrossRefGoogle Scholar
  26. 26.
    Mamtaz H, Fouladi MH, Nuawi MZ, Namasivayam SN, Ghassem M, Al-Atabi M (2017) Acoustic absorption of fibro-granular composite with cylindrical grains. Appl Acoust 126:58–67CrossRefGoogle Scholar
  27. 27.
    Mediastika CE (2009) Jerami sebagai bahan baku panel akustik pelapis dinding. DIMENSI J Archit Built Environ 36(1):20–27Google Scholar
  28. 28.
    Mohamed A, Sapuan S, Shahjahan M, Khalina A et al (2009) Characterization of pineapple leaf fibers from selected malaysian cultivars. J Food Agric Environ 7(1):235–240Google Scholar
  29. 29.
    Moszynski P (2011) WHO warns noise pollution is a growing hazard to health in Europe. British Medical Journal Publishing GroupGoogle Scholar
  30. 30.
    Münzel T, Gori T, Babisch W, Basner M (2014) Cardiovascular effects of environmental noise exposure. Eur Heart J 35(13):829–836CrossRefGoogle Scholar
  31. 31.
    Or KH, Putra A, Selamat MZ (2017) Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Appl Acoust 119:9–16CrossRefGoogle Scholar
  32. 32.
    Putra A, Or KH, Selamat MZ, Nor MJM, Hassan MH, Prasetiyo I (2018) Sound absorption of extracted pineapple-leaf fibres. Appl Acoust 136:9–15CrossRefGoogle Scholar
  33. 33.
    Putra A, Abdullah Y, Efendy H, Mohamad W, Salleh N (2013) Biomass from paddy waste fibers as sustainable acoustic material. In: Advances in acoustics and vibration 2013Google Scholar
  34. 34.
    Schroeder MR (1996) The “schroeder frequency” revisited. J Acoust Soc Am 99(5):3240–3241CrossRefGoogle Scholar
  35. 35.
    Skeeze (2019) Symphoni hall. Access 14 Aug 2019
  36. 36.
    Taban E, Khavanin A, Ohadi A, Putra A, Jafari AJ, Faridan M, Soleimanian A (2019) Study on the acoustic characteristics of natural date palm fibres: experimental and theoretical approaches. Build Environ. Scholar
  37. 37.
    Trevor J, D’Antonio P (2016) Acoustic absorbers and diffusers, 3rd edn. Taylor & FrancisGoogle Scholar
  38. 38.
    Wong K, Ahsan Q, Putra A, Subramonian S, Nor MJM (2017) Preliminary study on the sound absorption behavior of spent tea leaves filled with natural rubber latex binder. J Teknol 79(5–2)Google Scholar
  39. 39.
    Xiang H, Wang D, Liua H, Zhao N, Xu J (2013) Investigation on sound absorption properties of kapok fibers. Chinese J Polym Sci 31(3):521–529CrossRefGoogle Scholar
  40. 40.
    Ying LZ, Putra A, Nor MJM, Muhammad N, Yaakob MY (2016) Sound absorption of multilayer natural coir and kenaf fibers. In: Proceedings of 23rd international congress on sound and vibration. International Institute of Acoustics and Vibrations, GreeceGoogle Scholar
  41. 41.
    Zwikker C, Kosten CW (1949) Sound absorbing materials. ElsevierGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Centre for Advanced Research on EnergyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  2. 2.Acoustic Laboratory, Department of Engineering PhysicsInstitut Teknologi BandungBandungIndonesia
  3. 3.Fakulti Kejuruteraan MekanikalUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations