Advertisement

Improving Flame Retardancy of Pineapple Leaf Fibers

  • S. H. LeeEmail author
  • C. H. Lee
  • Z. M. A. Ainun
  • F. N. M. Padzil
  • Wei Chen Lum
  • Zakiah Ahmad
Chapter
  • 8 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Pineapple leaf fibers (PALF) are very suitable to act as reinforcing composite matrixes. Nevertheless, PALF is highly susceptible to the risk of fire hazard. Therefore, priority is often being placed in order to improve the fire retardancy of the PALF and its composite products. This chapter discusses the behavior of natural fibers in fire and various fire properties testing methods that can evaluate the fire performance of natural fibers. Different conventional fire retardant additives and its effects to the PALF fibers and its resultant composites are also been reviewed. Aluminum trihydroxide is the most popular flame retardant in the world. However, due to the prohibition of halogenated retardants, phosphorus-based flame retardants are expected to witness a gratifying market gains in the next few years. Flame retardants that are commonly used in improving flame retardancy of a material could be divided into reactive retardants, active fillers, and inert fillers. It also can be categorized based on their chemical nature, namely phosphorus-, halogen-, silicon-, and mineral-based flame retardants as well as nanometric particles. Different types of flame retardants have different mode of action and, therefore, is also functioned differently, where the mode of action of a flame retardant can be conveniently classified into physical action and chemical action.

Keywords

Pineapple leaf fibers Fire test Flame retardants Fire behavior Composite 

References

  1. 1.
    Abdul Motaleb KZM, Islam MS, Hoque MB (2018) Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. Int J Biomater 2018:7384360Google Scholar
  2. 2.
    Anonymous (2017) Global flame retardant market projected to reach US$11.96 billion by 2025. Addit Polym 1:10–11Google Scholar
  3. 3.
    Anonymous (2018) Ceresana updates flame retardants market study. Addit Polym 2018(3):8–9Google Scholar
  4. 4.
    Arib RMN, Sapuan SM, Hamdan MAMM, Paridah MT, Zaman HMDK (2004) A literature review of pineapple fibre reinforced polymer composites. Polym Polym Compos 12:341–348Google Scholar
  5. 5.
    Asim M, Jawaid M, Nasir M, Saba N (2018) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6(4):383–393CrossRefGoogle Scholar
  6. 6.
    Asim M, Paridah MT, Jawaid M, Nasir M, Saba N (2018) Physical and flammability properties of kenaf and pineapple leaf fibre hybrid composites. IOP Conf Ser Mater Sci Eng 368:012018CrossRefGoogle Scholar
  7. 7.
    Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:950567Google Scholar
  8. 8.
    Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272CrossRefGoogle Scholar
  9. 9.
    Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300CrossRefGoogle Scholar
  10. 10.
    Browne FL (1958) Theories of the combustion of wood and its control—a survey of the literature. FPL report no. 2136. Forest Products Laboratory, Madison, WIGoogle Scholar
  11. 11.
    Carpenter K, Janssens M (2005) Using heat release rate to assess combustibility of building products in the cone calorimeter. Fire Technol 41:79–92CrossRefGoogle Scholar
  12. 12.
    Carvel R, Steinhaus T, Rein G, Torero JL (2011) Determination of the flammability properties of polymeric materials: a novel method. Polym Degrad Stab 96:314–319CrossRefGoogle Scholar
  13. 13.
    Chai MW, Bickerton S, Bhattacharyya D, Das R (2012) Influence of natural fibre reinforcements on the flammability of bio-derived composite materials. Compos Part B-Eng 43:2867–2874CrossRefGoogle Scholar
  14. 14.
    Chapple S, Anandjiwala R (2010) Flammability of natural fibre-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23:871–893CrossRefGoogle Scholar
  15. 15.
    Chen L, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 21:1–26CrossRefGoogle Scholar
  16. 16.
    Correa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulosenanofibers from curaua fibers. Cell 17:1183–1192CrossRefGoogle Scholar
  17. 17.
    Fan M, Naughton A, Bregulla J (2017) Fire performance of natural fibre composites in construction. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Woodhead Publishing, Cambridge, pp 375–404CrossRefGoogle Scholar
  18. 18.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  19. 19.
    Fu F, Lin X, Xu E (2017) Functional pretreatments of natural raw materials. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Woodhead Publishing, Cambridge, pp 87–114CrossRefGoogle Scholar
  20. 20.
    Grexa O, Poutch F, Manikova D, Martvonova H, Bartekova A (2003) Intumescence in fire retardancy of lignocellulosic panels. Polym Degrad Stab 82:373–377CrossRefGoogle Scholar
  21. 21.
    Hangauer A, Spitznas A, Chen J, Strzoda R, Hans L, Fleischer M (2009) Laser spectroscopic oxygen sensor for real time combustion optimization. Proc Chem 1(1):955–958CrossRefGoogle Scholar
  22. 22.
    Hazarika D, Gogoi N, Jose S, Das R, Basu G (2017) Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod 141:580–586CrossRefGoogle Scholar
  23. 23.
    Horrocks AR, Price D (eds) (2001) Fire retardant materials. CRC Press, Boca RatonGoogle Scholar
  24. 24.
    Huggett C (1980) Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater 4:61–65CrossRefGoogle Scholar
  25. 25.
    IHS Markit (2017) Flame retardants: specialty chemicals update program. Accessed on 16 Jan 2019 from https://ihsmarkit.com/products/chemical-flame-retardants-scup.html
  26. 26.
    Kandola BK (2012) Flame retardant characteristics of natural fibre composites. RSC Green Chem 1:86–117Google Scholar
  27. 27.
    Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958CrossRefGoogle Scholar
  28. 28.
    Kozlowski RM, Muzyczek M, Walentowska J (2014) Flame retardancy and protection against biodeterioration of natural fibers: state-of-art and future prospects. In: Papaspyrides CD, Kiliaris P (eds) Polymer green flame retardants. Elsevier B.V., Amsterdam, pp 801–836Google Scholar
  29. 29.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63:100–125CrossRefGoogle Scholar
  30. 30.
    Leao AL, Cherian BM, Narine S, Souza SF, Sain M, Thomas S (2015) The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Woodhead Publishing, Cambridge, pp 211–235CrossRefGoogle Scholar
  31. 31.
    Leao AL, Souza SF, Cherian BM, Frollini E, Thomas S, Pothan LA, Kottaisamy M (2010) Agro-based biocomposites for industrial applications. Mol Cryst Liq Cryst 522:18–27Google Scholar
  32. 32.
    Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng 2014:514036Google Scholar
  33. 33.
    Liu J, Zhao X, Gao S, Ma X (2016) Research on combustion heat release rate testing technology based on TDLAS. Proc Eng 135:107–111CrossRefGoogle Scholar
  34. 34.
    Loredo NU, Bermejo JS (2016) Enhanced flame retardancy of flax bio-composites for the construction market. J Facade Des Eng 4:67–76CrossRefGoogle Scholar
  35. 35.
    Lowden LA, Hull TR (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev 2:4CrossRefGoogle Scholar
  36. 36.
    Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol 71:27–46CrossRefGoogle Scholar
  37. 37.
    Lyon RE, Walters RN, Stoliarov SI (2007) Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci 47:1501–1510CrossRefGoogle Scholar
  38. 38.
    Mngomezulu ME, John MJ, Jacobs V, Luyt AS (2014) Review on flammability of biofibres and biocomposites. Carbohydr Polym 111:149–182CrossRefGoogle Scholar
  39. 39.
    Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37:259–279CrossRefGoogle Scholar
  40. 40.
    Mouritz AP, Gibson AG (eds) (2007) Fire properties of polymer composite materials. Springer Netherlands, DordrechtGoogle Scholar
  41. 41.
    Nelson MI (2001) A dynamical systems model of the limiting oxygen index test: II. Retardancy due to char formation and addition of inert fillers. Combust Theor Model 5:59–83CrossRefGoogle Scholar
  42. 42.
    Patel P, Hull TR, Moffatt C (2012) PEEK polymer flammability and the inadequacy of the UL-94 classification. Fire Mater 36:185–201CrossRefGoogle Scholar
  43. 43.
    Pawlowski KH, Schartel B, Fichera MA, Jäger C (2010) Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends. Thermochim Acta 498:92–99CrossRefGoogle Scholar
  44. 44.
    Petrella RV (1994) The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci 12:14–43CrossRefGoogle Scholar
  45. 45.
    Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162CrossRefGoogle Scholar
  46. 46.
    Schartel B, Bartholmai M, Knoll U (2006) Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym Adv Technol 17:772–777CrossRefGoogle Scholar
  47. 47.
    Schartel B, Hull TR (2007) Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater 31:327–354CrossRefGoogle Scholar
  48. 48.
    Schartel B, Pawlowski KH, Lyon RE (2007) Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials? Thermochim Acta 462:1–14CrossRefGoogle Scholar
  49. 49.
    Sena Neto AR, Araujo MAM, Barboza RMP, Fonseca AS, Tonoli GHD, Souza FVD, Mattoso LHC, Marconcini JM (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crop Prod 64:68–78CrossRefGoogle Scholar
  50. 50.
    Siakeng R, Jawaid M, Arrifin H, Sapuan SM (2018) Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng 368:012019CrossRefGoogle Scholar
  51. 51.
    Smith EE (1996) Heat release rate calorimetry. Fire Technol 32:333–347CrossRefGoogle Scholar
  52. 52.
    The Freedonia Group (2018) World flame retardants. Accessed on 16 Jan 2019 from https://www.freedoniagroup.com/industry-study/world-flame-retardants-3258.htm
  53. 53.
    Threepopnatkul P, Krachang T, Kulsetthanchalee C (2014) Phosphate derivative flame retardants on properties of pineapple leaf fiber/ABS composites. Polym Polym Compos 22(7):591–597Google Scholar
  54. 54.
    Threepopnatkul P, Krachang T, Teerawattananon W, Suriyaphaparkorn K, Kulsetthanchalee C (2013) Effect of flame retardants on performance of PALF/ABS composites. Adv Mater Res 747:351–354 CrossRefGoogle Scholar
  55. 55.
    Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos Part B-Eng 60:341–349CrossRefGoogle Scholar
  56. 56.
    Wang Y, Zhang F, Chen X, Jin Y, Zhang J (2010) Burning and dripping behaviors of polymers under the UL94 vertical burning test conditions. Fire Mater 34:203–215CrossRefGoogle Scholar
  57. 57.
    White RH (1979) Oxygen index evaluation of fire-retardant-treated wood. Wood Sci 12:113–121Google Scholar
  58. 58.
    Ye L, Wu Q, Qu B (2009) Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym Degrad Stab 94:751–756CrossRefGoogle Scholar
  59. 59.
    Zhang S, Horrocks AR (2003) A review of flame retardant polypropylene fibres. Prog Polym Sci 28:1517–1538CrossRefGoogle Scholar
  60. 60.
    Zheng C, Li D, Ek M (2019) Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants. Nord Pulp Pap Res J 34:96–106CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. H. Lee
    • 1
    Email author
  • C. H. Lee
    • 1
  • Z. M. A. Ainun
    • 1
  • F. N. M. Padzil
    • 1
  • Wei Chen Lum
    • 2
  • Zakiah Ahmad
    • 2
  1. 1.Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM)UPM SerdangMalaysia
  2. 2.Institute of Infrastructure Engineering and Sustainability Management, Universiti Teknologi MARAShah AlamMalaysia

Personalised recommendations