Improving the Properties of Pineapple Leaf Fibres by Chemical Treatments

  • R. Siakeng
  • M. Jawaid
  • Paridah Md. Tahir
  • S. Siengchin
  • M. AsimEmail author
Part of the Green Energy and Technology book series (GREEN)


Natural fibres such as pineapple leaf fibre (PALF) have the advantages of low density, lightweight, low cost, biodegradability and renewability. Recently, many research works have been conducted all over the world on utilization of natural fibres as a reinforcing material for composites for variety of applications. Nonetheless, the inherent lack of good compatibility of natural fibre towards the polymer matrices limits the utilization of natural fibre for reinforcing agent in composites less attractive. For that reason, chemical treatments are considered in modifying the fibre properties which aimed at improving the compatibility of fibre and the polymer matrix. Chemical treatments of PALF can help clean the fibre surface, modify the surface and increase the surface roughness. Ultimately, moisture absorption is reduced in the treated fibre reinforced composites which results in enhancements of mechanical properties. In this article, effect of chemical treatment on the properties of PALF and PALF-reinforced polymer composites is discussed and different chemical treatment with their functions is listed. Recent studies dealing with chemical-treated PALF-reinforced composites have also been cited.


Pineapple leaf fibre Treatments Interfacial bonding Mechanical properties Physical properties Thermal properties 


  1. 1.
    Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M, et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym SciGoogle Scholar
  2. 2.
    Asim M, Jawaid M, Abdan K, Ishak M (2017) Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers Polym 18(5):940–947CrossRefGoogle Scholar
  3. 3.
    Asim M, Jawaid M, Abdan K, Ishak M, Alothman O (2018) Effect of hybridization on the mechanical properties of pineapple leaf fiber/kenaf phenolic hybrid composites. J Renew Mater 6(1):38–46CrossRefGoogle Scholar
  4. 4.
    Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13(3):426–435CrossRefGoogle Scholar
  5. 5.
    Asim M, Jawaid M, Nasir M, Saba N (2018) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6(4):383–393CrossRefGoogle Scholar
  6. 6.
    Asim M, Paridah M, Saba N, Jawaid M, Alothman OY, Nasir M et al (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 202:1330–1338CrossRefGoogle Scholar
  7. 7.
    Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. Monomers, polymers and composites from renewable resources (pp. 385–400). ElsevierGoogle Scholar
  8. 8.
    Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798CrossRefGoogle Scholar
  9. 9.
    Cherian BM, Leão AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725CrossRefGoogle Scholar
  10. 10.
    Dey S, Bhattacharyya G, Bhattacharyya S (2005) Magic yarns from ramie and pineapple—a new dimension in 21st century. In: Proceedings of the 20th Indian Engineering Congress, p 69Google Scholar
  11. 11.
    Essabir H, Achaby ME, Hilali EM, Bouhfid R, Qaiss A (2015) Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bionic Eng 12(1):129–141CrossRefGoogle Scholar
  12. 12.
    George J, Sreekala M, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRefGoogle Scholar
  13. 13.
    Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25CrossRefGoogle Scholar
  14. 14.
    Hossain MK, Dewan MW, Hosur M, Jeelani S (2011) Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos B Eng 42(6):1701–1707CrossRefGoogle Scholar
  15. 15.
    Huda M, Drzal L, Mohanty A, Misra M (2007) The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly (lactic acid)/newspaper fibers/talc hybrid composites. Compos B Eng 38(3):367–379CrossRefGoogle Scholar
  16. 16.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15(2–3):169–191CrossRefGoogle Scholar
  17. 17.
    Kabir M, Wang H, Lau K, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892CrossRefGoogle Scholar
  18. 18.
    Kabir M, Wang H, Lau K, Cardona F (2013) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos B Eng 53:362–368. Scholar
  19. 19.
    Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272CrossRefGoogle Scholar
  20. 20.
    Khan MA, Mina F, Drzal L (2000) Influence of silane coupling agents of different functionalities on the performance of jute-polycarbonate composite. In: 3rd International Wood and Natural Fibre Composite Symposium, pp 1–8Google Scholar
  21. 21.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873. Scholar
  22. 22.
    Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R et al (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A Appl Sci Manuf 39(3):514–522. Scholar
  23. 23.
    Lee KY, Delille A, Bismarck A (2011) Greener surface treatments of natural fibres for the production of renewable composite materials. Cellulose fibers: bio-and nano-polymer composites (pp. 155–178). SpringerGoogle Scholar
  24. 24.
    Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102(2):1974–1984. Scholar
  25. 25.
    Meon MS, Othman MF, Husain H, Remeli MF, Syawal MSM (2012) Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Eng 41:1587–1592CrossRefGoogle Scholar
  26. 26.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289(11):955–974CrossRefGoogle Scholar
  27. 27.
    Mohanty A, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24CrossRefGoogle Scholar
  28. 28.
    Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234CrossRefGoogle Scholar
  29. 29.
    Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B Eng 42(6):1648–1656CrossRefGoogle Scholar
  30. 30.
    Nasir M, Khali D, Jawaid M, Tahir P, Siakeng R, Asim M et al (2019) Recent development in binderless fiber-board fabrication from agricultural residues: a review. Constr Build Mater 211:502–516CrossRefGoogle Scholar
  31. 31.
    Nirmal U, Singh N, Hashim J, Lau ST, Jamil N (2011) On the effect of different polymer matrix and fibre treatment on single fibre pullout test using betelnut fibres. Mater Des 32(5):2717–2726CrossRefGoogle Scholar
  32. 32.
    Omojasola PF, Jilani OP, Ibiyemi S (2008) Cellulase production by some fungi cultured on pineapple waste. Nat Sci 6(2):64–79Google Scholar
  33. 33.
    Panyasart K, Chaiyut N, Amornsakchai T, Santawitee O (2014) Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy procedia 56:406–413CrossRefGoogle Scholar
  34. 34.
    Puglia D, Monti M, Santulli C, Sarasini F, De Rosa IM, Kenny JM (2013) Effect of alkali and silane treatments on mechanical and thermal behavior of phormium tenax fibers. Fibers Polym 14(3):423–427. Scholar
  35. 35.
    Rahman MA (2011) Study on modified pineapple leaf fiber. J Text Appar, Technol Manag 7(2)Google Scholar
  36. 36.
    Ray D, Sarkar B (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020CrossRefGoogle Scholar
  37. 37.
    Rosa MF, Chiou BS, Medeiros ES, Wood DF, Mattoso LH, Orts WJ et al (2009) Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. J Appl Polym Sci 111(2):612–618Google Scholar
  38. 38.
    Samal R, Acharya S, Mohanty M, Ray M (2001) FTIR spectra and physico-chemical behavior of vinyl ester participated transesterification and curing of jute. J Appl Polym Sci 79(4):575–581CrossRefGoogle Scholar
  39. 39.
    Samal R, Ray MC (1997) Effect of chemical modifications on FTIR spectra. II Physicochemical behavior of pineapple leaf fiber (PALF). J Appl Polym Sci 64(11):2119–2125Google Scholar
  40. 40.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 42(9):1189–1196CrossRefGoogle Scholar
  41. 41.
    Siakeng R, Jawaid M, Ariffin H, Salit MS (2018) Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. J Bionic Eng 15(6):1035–1046CrossRefGoogle Scholar
  42. 42.
    Siakeng R, Jawaid M, Ariffin H, Sapuan S (2018b) Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. In: IOP Conference Series: Materials Science and Engineering, vol 368, no 1, p 012019Google Scholar
  43. 43.
    Siakeng R, Jawaid M, Ariffin H, Sapuan S (2019) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 40(5):2000–2011CrossRefGoogle Scholar
  44. 44.
    Siakeng R, Jawaid M, Ariffin H, Sapuan S, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40(2):446–463CrossRefGoogle Scholar
  45. 45.
    Sreenivasan S, Ibraheem SA, Sulaiman S, Baharudin B, Ariffin MK, Abdan K (2014) Evaluation of combined treatments of natural fibers: kenaf, abaca and oil palm fibers using micromechanical and SEM methods. In: Advanced Materials Research, vol 912, pp 1932–1939. Trans Tech PublicationGoogle Scholar
  46. 46.
    Terpakova E, Kidalova L, Eštoková A, Čigášová J, Števulová N (2012) Chemical modification of hemp shives and their characterization. Procedia Eng 42:931–941CrossRefGoogle Scholar
  47. 47.
    Thongsang S, Sombatsompop N (2006) Effect of NaOH and Si 69 treatments on the properties of fly ash/natural rubber composites. Polym Compos 27(1):30–40CrossRefGoogle Scholar
  48. 48.
    Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos B Eng 40(7):628–632CrossRefGoogle Scholar
  49. 49.
    Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31(6):425–437. Scholar
  50. 50.
    Yusof Y, Yahya SA, Adam A (2015) Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP 26:756–760CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. Siakeng
    • 1
  • M. Jawaid
    • 2
  • Paridah Md. Tahir
    • 2
  • S. Siengchin
    • 1
  • M. Asim
    • 2
    Email author
  1. 1.Department of Mechanical and Process Engineering, The Sirindhorn International Thai German, Graduate School of Engineering (TGGS)King Mongkut’s University of Technology North BangkokBangkokThailand
  2. 2.Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP)Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations