Fabrication of Pineapple Leaf Fibers Reinforced Composites

  • I. Cesarino
  • M. B. Carnietto
  • G. R. F. Bronzato
  • A. L. LeaoEmail author
Part of the Green Energy and Technology book series (GREEN)


Consumers are more aware of environmental impacts and climatic problems, which leads to a greater demand for products with technological innovations. Research has the aim to replace and reduce raw materials from fossil sources to renewable sources, such as the natural fibers. Natural fiber composites result from the blending of two materials: one is the plastic and the other a fiber, from agricultural waste in most of the cases. Compared to polymers from fossil sources, this new material has three main advantages: they have an environmental approved; low cost and its physical and mechanical properties are superior. The cultivation of this fruit is large in many tropical countries. After harvesting, the fruit and shoots are removed, and the rest needs to be cut and removed from the soil. This material, most leaves, becomes waste and goes to disposal. However, the use of pineapple leaf fibers as a raw material for natural fiber composites production helps to reduce the pollution caused by these residues and can increase the income of pineapple producers making a channel to new business. To have success in producing NFC, it is necessary to understand process techniques; to the adhesion between fiber and the polymer; the ratio of polymer and natural fiber; and the market (automotive, construction, etc.). But, after reading this chapter, it will be possible to conclude that there is a huge opportunity to improve the natural fibers market in front of the other reinforcements because of their properties.


Pineapple fibers Natural fiber composites Polymers PALF properties 


  1. 1.
    Faruk O et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26.
  2. 2.
    Goulart SAS et al (2011) Mechanical behavior of polypropylene reinforced palm fibers composites. Procedia Eng 10:2034–2039CrossRefGoogle Scholar
  3. 3.
    Asim M et al (2015) Review article a review on pineapple leaves fibre and its composites. Int J Polym SciGoogle Scholar
  4. 4.
    Dermibas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116. Scholar
  5. 5.
    Marinelli AL et al (2008) Desenvolvimento de Compósitos Poliméricos com Fibras Vegetais Naturais da Biodiversidade: Uma Contribuição para a Sustentabilidade Amazônica. Polímeros: Ciência e Tecnol 18(2):92–99Google Scholar
  6. 6.
    Silva R et al (2009) Applications of lignocellulosic fibers in polymer chemistry and in composites. Quím Nova 32(3).
  7. 7.
    Eckert CH (2000) Opportunities for natural fibers in plastic composites. In: Proceedings of the conference on progress in woodfibre-plastic composites, University of Toronto, Canada, pp 87–106Google Scholar
  8. 8.
    Nova Institute (2014) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global markets 2012 and future trends in automotive and construction. Nova InstituteGoogle Scholar
  9. 9.
    Grand View Research (2016) Natural fiber composites (NFC) market size, share & trends report natural fiber composites (NFC) market size, share & trends analysis report by raw material, by matrix, by technology, by application, and segment forecasts, 2018–2024. 2016. Available in: Accessed in: 15 July 2019
  10. 10.
    Chandramohan D, Marimuthu K (2011) A review on natural fibers. IJRRAS 8(2)Google Scholar
  11. 11.
  12. 12.
    Pupo HFF (2017) Viabilidade técnica da produção de compósitos fibra polímero à base de resíduos. Doctoral thesis. Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  13. 13.
    Marcon JS et al (2009) Estudo da modificação da fibra proveniente da coroa de abacaxi para a formação de compósitos poliméricos. Anais do 10º Congresso Brasileiro de Polímeros, Foz do Iguaçu, PRGoogle Scholar
  14. 14.
    Scandola EZM (2011) Green composites: an overview. Polym Compos, 1906–1915Google Scholar
  15. 15.
    Zah R et al (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Cleaner Prod 15(11):1032–1040. ISSN 0959-6526Google Scholar
  16. 16.
    Leao AL et al (2000) Curaua fiber–a tropical natural fibers from Amazon potential and applications in composites. Nat Polym Agrofibers Bases Compos Embrapa Instrumentacao Agropecuaria, 257–272Google Scholar
  17. 17.
    Santosha PVChRK et al (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fibers reinforced polyester composites. Sci Direct Mater Today: Proc 5:5631–5635Google Scholar
  18. 18.
    Chollakup R et al (2011) Pineapple leaf fibers reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Alexandre MEO (2005) Compósitos de Matriz Poliéster Reforçados com Fibra da Folha do Abacaxi. Doctoral thesis. Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  21. 21.
    Sapuan SM et al (2011) Pineapple leaf fibers and PALF-reinforced polymer composites. Cellul Fibers Bio- Nano-Polym Compos, 325–343.
  22. 22.
    Mishra S et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974.
  23. 23.
    Kleba I, Zabold J (2004) Poliuretano com fibras naturais ganha espaço na indústria automotiva. Plástico Ind, 88–99Google Scholar
  24. 24.
    Leao AL et al (2010) Agro-based biocomposites for industrial applications. Mol Cryst Liq Cryst, 318–327.
  25. 25.
    Beltrami LVR et al (2014) Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compósitos de matriz biodegradável. Polímeros 24(3):388–394CrossRefGoogle Scholar
  26. 26.
    Li X et al (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33.
  27. 27.
    Ishizaki MH et al (2006) Caracterização mecânica e morfológica de compósitos de polipropileno e fibras de coco verde: influência do teor de fibra e das condições de mistura. Polímeros: Ciência e Tecnologia, São Carlos 16(3):182–186Google Scholar
  28. 28.
    Siakeng R et al (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463.
  29. 29.
    JUCH, Available in: Accessed in: 22 Aug 2019
  30. 30.
    Jawaid M, Khalil HPSA (2011) Cellulosic synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18CrossRefGoogle Scholar
  31. 31.
    Composite World, Available in st/natural-fiber-composites-whats-holding-them-back. Accessed in: 22 Aug 2019
  32. 32.
    Mohanty AK et al (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1/2)Google Scholar
  33. 33.
    Aquino MS (2006) Desenvolvimento de uma desfribadeira para obtenção da fibra da folha do abacaxi. Master dissertation. Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  34. 34.
    Paul NG (1980) Some methods for the utilisation of waste from fibre crops and fibre waste from other crops. Agric Waste 2:313–318CrossRefGoogle Scholar
  35. 35.
    Leao AL et al (2014) The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Biofiber reinforcements in composite materials, vol 1(1), pp 211–235Google Scholar
  36. 36.
    Leao AL et al (2007) Production of curaua (Ananas Erectifolius LB SMITH) fibers for industrial applications: characterization and micropropagation. In: VI international pineapple symposium, vol 822, pp 227–238Google Scholar
  37. 37.
    Ahmad F et al (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24. Scholar
  38. 38.
    Joshi SV et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376Google Scholar
  39. 39.
    Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innov Technol (IJESIT). 3(2)Google Scholar
  40. 40.
    FAO, Accessible online at Accessed in: 01 Aug 2019
  41. 41.
    Mohanty AK et al (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos Sci Technol 60:1115–1124CrossRefGoogle Scholar
  42. 42.
    Ku H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Natural fiber for automotive, Avaiable in: Accessed 08 Jan 2019

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • I. Cesarino
    • 1
  • M. B. Carnietto
    • 1
  • G. R. F. Bronzato
    • 1
  • A. L. Leao
    • 1
    Email author
  1. 1.School of AgricultureSao Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations