Advertisement

Trends and Features of Human Brain Research Using Artificial Intelligence Techniques: A Bibliometric Approach

  • Xieling Chen
  • Xinxin Zhang
  • Haoran Xie
  • Fu Lee Wang
  • Jun Yan
  • Tianyong HaoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1072)

Abstract

Artificial Intelligence (AI) plays an increasingly important role in advancing human brain research, given the continually growing number of academic research articles in the last decade. Meanwhile, human brain research can provide opportunities for the development of innovative AI techniques. Exploring and tracking patterns of the scientific articles of human brain research using AI can provide a comprehensive overview of the interdisciplinary field. Thus, this paper presents a bibliometric analysis to identify research status and development trend of the field between 2009 and 2018. Specifically, we analyze annual distributions of articles and their citations, identify prolific journals and affiliations, and visualize characteristics of scientific collaboration. Furthermore, research topics are analyzed and revealed. The obtained findings benefit scholars in the field, to understand the current status of research as well as monitoring scientific and technological activities.

Keywords

Human brain research Artificial Intelligence Bibliometric analysis Scientific collaboration Research hotspots 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61772146).

References

  1. 1.
    Lee, E.J., Kim, Y.H., Kim, N., Kang, D.W.: Deep into the brain: artificial intelligence in stroke imaging. J. Stroke 19(3), 277 (2017)CrossRefGoogle Scholar
  2. 2.
    Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)CrossRefGoogle Scholar
  3. 3.
    Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)CrossRefGoogle Scholar
  4. 4.
    Gao, X.W., Hui, R., Tian, Z.: Classification of CT brain images based on deep learning networks. Comput. Methods Programs Biomed. 138, 49–56 (2017)CrossRefGoogle Scholar
  5. 5.
    Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)CrossRefGoogle Scholar
  6. 6.
    Morabito, F.C., Campolo, M., Mammone, N., Versaci, M., Franceschetti, S., Tagliavini, F., et al.: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia. Int. J. Neural Syst. 27(02), 1650039 (2017)CrossRefGoogle Scholar
  7. 7.
    Dosenbach, N.U., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., et al.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010)CrossRefGoogle Scholar
  8. 8.
    Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Alzheimer’s disease neuroimaging initiative: multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)CrossRefGoogle Scholar
  10. 10.
    Stam, C.J., et al.: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1), 213–224 (2008)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Weng, H., Hao, T.: A data-driven approach for discovering the recent research status of diabetes in China. In: Siuly, S., et al. (eds.) HIS 2017. LNCS, vol. 10594, pp. 89–101. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69182-4_10CrossRefGoogle Scholar
  12. 12.
    Chen, X., Chen, B., Zhang, C., Hao, T.: Discovering the recent research in natural language processing field based on a statistical approach. In: Huang, T.-C., Lau, R., Huang, Y.-M., Spaniol, M., Yuen, C.-H. (eds.) SETE 2017. LNCS, vol. 10676, pp. 507–517. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71084-6_60CrossRefGoogle Scholar
  13. 13.
    Hao, T., Chen, X., Li, G., Yan, J.: A bibliometric analysis of text mining in medical research. Soft. Comput. 22(23), 7875–7892 (2018)CrossRefGoogle Scholar
  14. 14.
    Chen, X., Liu, Z., Wei, L., Yan, J., Hao, T., Ding, R.: A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008–2017. BMC Med. Inform. Decis. Mak. 18(5), 117 (2018)CrossRefGoogle Scholar
  15. 15.
    Chen, X., Ding, R., Xu, K., Wang, S., Hao, T., Zhou, Y.: A bibliometric review of natural language processing empowered mobile computing. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  16. 16.
    Chen, X., Xie, H., Wang, F.L., Liu, Z., Xu, J., Hao, T.: A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 18(1), 14 (2018)CrossRefGoogle Scholar
  17. 17.
    Chen, X., Hao, J., Chen, J., Hua, S., Hao, T.: A bibliometric analysis of the research status of the technology enhanced language learning. In: Hao, T., Chen, W., Xie, H., Nadee, W., Lau, R. (eds.) SETE 2018. LNCS, vol. 11284, pp. 169–179. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03580-8_18CrossRefGoogle Scholar
  18. 18.
    Song, Y., Chen, X., Hao, T., Liu, Z., Lan, Z.: Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 137, 12–31 (2019)CrossRefGoogle Scholar
  19. 19.
    Chen, X., Lun, Y., Yan, J., Hao, T., Weng, H.: Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med. Inform. Decis. Mak. 19(2), 50 (2019)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Wang, S., Tang, Y., Hao, T.: A bibliometric analysis of event detection in social media. Online Inf. Rev. 43(1), 29–52 (2019)CrossRefGoogle Scholar
  21. 21.
    Peng, B., Guo, D., Qiao, H., Yang, Q., Zhang, B., Hayat, T., et al.: Bibliometric and visualized analysis of China’s coal research 2000–2015. J. Clean. Prod. 197, 1177–1189 (2018)CrossRefGoogle Scholar
  22. 22.
    Hassan, S.U., Haddawy, P., Zhu, J.: A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics 99(2), 549–579 (2014)CrossRefGoogle Scholar
  23. 23.
    Du, H.S., Ke, X., Chu, S.K., Chan, L.T.: A bibliometric analysis of emergency management using information systems (2000–2016). Online Inf. Rev. 41(4), 454–470 (2017)CrossRefGoogle Scholar
  24. 24.
    Hirsch, J.E., Buela-Casal, G.: The meaning of the H-index. Int. J. Clin. Health Psychol. 14(2), 161–164 (2014)CrossRefGoogle Scholar
  25. 25.
    Mann, H.B.: Nonparametric tests against trend. Econ.: J. Econ. Soc. 13, 245–259 (1945)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Simoes, R., van Walsum, A.M.V.C., Slump, C.H.: Classification and localization of early-stage Alzheimer’s disease in magnetic resonance images using a patch-based classifier ensemble. Neuroradiology 56(9), 709–721 (2014)CrossRefGoogle Scholar
  27. 27.
    Fu, K., Qu, J., Chai, Y., Dong, Y.: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed. Signal Process. Control 13, 15–22 (2014)CrossRefGoogle Scholar
  28. 28.
    Jamal, W., Das, S., Oprescu, I.A., Maharatna, K., Apicella, F., Sicca, F.: Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J. Neural Eng. 11(4), 046019 (2014)CrossRefGoogle Scholar
  29. 29.
    Jayachandran, A., Sundararaj, G.K.: Abnormality segmentation and classification of multi-class brain tumor in MR images using fuzzy logic-based hybrid kernel SVM. Int. J. Fuzzy Syst. 17(3), 434–443 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xieling Chen
    • 1
  • Xinxin Zhang
    • 2
  • Haoran Xie
    • 1
  • Fu Lee Wang
    • 3
  • Jun Yan
    • 4
  • Tianyong Hao
    • 5
    Email author
  1. 1.Department of Mathematics and Information TechnologyThe Education University of Hong KongHong Kong SARChina
  2. 2.Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
  3. 3.School of Science and TechnologyThe Open University of Hong KongHong Kong SARChina
  4. 4.AI LabYidu Cloud (Beijing) Technology Co., Ltd.BeijingChina
  5. 5.School of Computer ScienceSouth China Normal UniversityGuangzhouChina

Personalised recommendations